Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

被引:146
作者
Chang, SM
Lin, CS
Lin, TC
Lin, WW [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[2] Natl Chung Cheng Univ, Dept Math, Chiayi, Taiwan
关键词
nodal domains; Bose-Einstein condensates; Gauss-Seidel-type iteration;
D O I
10.1016/j.physd.2004.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration, method is very effective in that it converges linearly in 10-20 steps. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 361
页数:21
相关论文
共 27 条
  • [11] Spontaneous spatial symmetry breaking in two-component Bose-Einstein condensates
    Esry, BD
    Greene, CH
    [J]. PHYSICAL REVIEW A, 1999, 59 (02): : 1457 - 1460
  • [12] Hartree-Fock theory for double condensates
    Esry, BD
    Greene, CH
    Burke, JP
    Bohn, JL
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (19) : 3594 - 3597
  • [13] Gilbarg D., 1989, Elliptic Partial Differential Equations of Second Order
  • [14] Radio-frequency spectroscopy of ultracold fermions
    Gupta, S
    Hadzibabic, Z
    Zwierlein, MW
    Stan, CA
    Dieckmann, K
    Schunck, CH
    van Kempen, EGM
    Verhaar, BJ
    Ketterle, W
    [J]. SCIENCE, 2003, 300 (5626) : 1723 - 1726
  • [15] Dynamics of component separation in a binary mixture of Bose-Einstein condensates
    Hall, DS
    Matthews, MR
    Ensher, JR
    Wieman, CE
    Cornell, EA
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (08) : 1539 - 1542
  • [16] Special set and solutions of coupled nonlinear Schrodinger equations
    Hioe, FT
    Salter, TS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (42): : 8913 - 8928
  • [17] Solitary waves for N coupled nonlinear Schrodinger equations
    Hioe, FT
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (06) : 1152 - 1155
  • [18] Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrodinger equations
    Kanna, T
    Lakshmanan, M
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5043 - 5046
  • [19] KAWOHL B, 1994, PARTIAL DIFFERENTIAL, V35, P165
  • [20] A note on finite difference discretizations for Poisson equation on a disk
    Lai, MC
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (03) : 199 - 203