Bayesian composite quantile regression for linear mixed-effects models

被引:11
作者
Tian, Yuzhu [1 ]
Lian, Heng [2 ]
Tian, Maozai [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Box 67,Kaiyuan Rd, Luoyang City 471023, Henan Province, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite quantile regression (CQR); mixed-effects models; MCMC algorithm; The PCALD; IMMUNOLOGICAL RESPONSES; ANTIRETROVIRAL THERAPY; EFFICIENT;
D O I
10.1080/03610926.2016.1161798
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.
引用
收藏
页码:7717 / 7731
页数:15
相关论文
共 50 条
  • [41] Nonlinear nonparametric mixed-effects models for unsupervised classification
    Laura Azzimonti
    Francesca Ieva
    Anna Maria Paganoni
    Computational Statistics, 2013, 28 : 1549 - 1570
  • [42] Using mixed-effects models in reliability generalization studies
    Beretvas, SN
    Pastor, DA
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2003, 63 (01) : 75 - 95
  • [43] Mixed-effects models for mental health services research
    Gibbons R.D.
    Health Services and Outcomes Research Methodology, 2000, 1 (2) : 91 - 129
  • [44] Understanding Mixed-Effects Models Through Data Simulation
    DeBruine, Lisa M.
    Barr, Dale J.
    ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2021, 4 (01)
  • [45] Composite quantile regression for single-index models with asymmetric errors
    Sun, Jing
    COMPUTATIONAL STATISTICS, 2016, 31 (01) : 329 - 351
  • [46] Two step composite quantile regression for single-index models
    Jiang, Rong
    Zhou, Zhan-Gong
    Qian, Wei-Min
    Chen, Yong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 180 - 191
  • [47] Extensions to Bayesian generalized linear mixed effects models for household tuberculosis transmission
    McIntosh, Avery I.
    Doros, Gheorghe
    Jones-Lopez, Edward C.
    Gaeddert, Mary
    Jenkins, Helen E.
    Marques-Rodrigues, Patricia
    Ellner, Jerrold J.
    Dietze, Reynaldo
    White, Laura F.
    STATISTICS IN MEDICINE, 2017, 36 (16) : 2522 - 2532
  • [48] Local Composite Quantile Regression for Regression Discontinuity
    Huang, Xiao
    Zhan, Zhaoguo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1863 - 1875
  • [49] Bayesian Functional Mixed-effects Models with Grouped Smoothness for Analyzing Time-course Gene Expression Data
    Ye, Shangyuan
    Liang, Ye
    Zhang, Bo
    CURRENT BIOINFORMATICS, 2021, 16 (01) : 2 - 12
  • [50] Approximate Methods for Maximum Likelihood Estimation of Multivariate Nonlinear Mixed-Effects Models
    Wang, Wan-Lun
    ENTROPY, 2015, 17 (08) : 5353 - 5381