Bayesian composite quantile regression for linear mixed-effects models

被引:11
作者
Tian, Yuzhu [1 ]
Lian, Heng [2 ]
Tian, Maozai [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Box 67,Kaiyuan Rd, Luoyang City 471023, Henan Province, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite quantile regression (CQR); mixed-effects models; MCMC algorithm; The PCALD; IMMUNOLOGICAL RESPONSES; ANTIRETROVIRAL THERAPY; EFFICIENT;
D O I
10.1080/03610926.2016.1161798
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.
引用
收藏
页码:7717 / 7731
页数:15
相关论文
共 50 条
  • [31] Bayesian mixed-effects model for the analysis of a series of FRAP images
    Feilke, Martina
    Schneider, Katrin
    Schmid, Volker J.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2015, 14 (01) : 35 - 51
  • [32] Univariate Autoregressive Structural Equation Models as Mixed-Effects Models
    Nestler, Steffen
    Humberg, Sarah
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2024, 31 (02) : 357 - 366
  • [33] Bayesian bridge-randomized penalized quantile regression
    Tian, Yuzhu
    Song, Xinyuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [34] Likelihood-based inference for linear mixed-effects models using the generalized hyperbolic distribution
    Lachos, Victor H.
    Galea, Manuel
    Zeller, Camila
    Prates, Marcos O.
    STAT, 2023, 12 (01):
  • [35] Bayesian joint-quantile regression
    Hu, Yingying
    Wang, Huixia Judy
    He, Xuming
    Guo, Jianhua
    COMPUTATIONAL STATISTICS, 2021, 36 (03) : 2033 - 2053
  • [36] Comparison of Mixed-Effects Models for Skew-Normal Responses with an Application to AIDS Data: A Bayesian Approach
    Huang, Yangxin
    Dagne, Getachew
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (06) : 1268 - 1287
  • [37] Nonlinear nonparametric mixed-effects models for unsupervised classification
    Azzimonti, Laura
    Ieva, Francesca
    Paganoni, Anna Maria
    COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1549 - 1570
  • [38] Productivity Reanalysis for Unbalanced Datasets with Mixed-Effects Models
    Amasaki, Sousuke
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, 2010, 6156 : 276 - 290
  • [39] Composite smoothed quantile regression
    Yan, Yibo
    Wang, Xiaozhou
    Zhang, Riquan
    STAT, 2023, 12 (01):
  • [40] Composite kernel quantile regression
    Bang, Sungwan
    Eo, Soo-Heang
    Jhun, Myoungshic
    Cho, Hyung Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2228 - 2240