ESPRIT-Hilbert-Based Audio Tampering Detection With SVM Classifier for Forensic Analysis via Electrical Network Frequency

被引:34
作者
Gil Innocencio Reis, Paulo Max [1 ,2 ]
Carvalho Lustosa da Costa, Joao Paulo [2 ,3 ,4 ]
Miranda, Ricardo Kehrle [2 ,3 ]
Del Galdo, Giovanni [3 ,4 ]
机构
[1] Natl Inst Criminalist, Forens Examinat Serv Elect & Multimedia Evidences, BR-70610902 Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Elect Engn, BR-70919970 Brasilia, DF, Brazil
[3] Ilmenau Univ Technol, Inst Informat Technol, D-98693 Ilmenau, Germany
[4] Fraunhofer Inst Integrated Circuits IIS, D-91058 Erlangen, Germany
关键词
Acoustical signal processing; tampering detection; ESPRIT; audio authenticity; electric network frequency (ENF); AUTHENTICITY;
D O I
10.1109/TIFS.2016.2636095
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Audio authentication is a critical task in multimedia forensics demanding robust methods to detect and identify tampered audio recordings. In this paper, a new technique to detect adulterations in audio recordings is proposed by exploiting abnormal variations in the electrical network frequency (ENF) signal eventually embedded in a questioned audio recording. These abnormal variations are caused by abrupt phase discontinuities due to insertions and suppressions of audio snippets during the tampering task. First, we propose an ESPRIT-Hilbert ENF estimator in conjunction with an outlier detector based on the sample kurtosis of the estimated ENF. Next, we use the computed kurtosis as an input for a support vector machine classifier to indicate the presence of tampering. The proposed scheme, herein designated as SPHINS, significantly outperforms related previous tampering detection approaches in the conducted tests. We validate our results using the Carioca 1 corpus with 100 unedited authorized audio recordings of phone calls.
引用
收藏
页码:853 / 864
页数:12
相关论文
共 25 条
  • [1] Edit Detection in Speech Recordings via Instantaneous Electric Network Frequency Variations
    Andrade Esquef, Paulo Antonio
    Apolinario, Jose Antonio, Jr.
    Biscainho, Luiz W. P.
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2014, 9 (12) : 2314 - 2326
  • [2] ANEEL, 2013, PROC DISTR EN EL SIS
  • [3] [Anonymous], 2011, PROC 19 ACM INT C MU, DOI [10.1145/2072298.2072303, DOI 10.1145/2072298.2072303]
  • [4] Bishop C., 2006, Pattern recognition and machine learning, P423
  • [5] Cooper A. J., 2008, P AUD ENG SOC 33 C A, P1
  • [6] Farid H., 1999, TECH REP
  • [7] Current Developments and Future Trends in Audio Authentication
    Gupta, Swati
    Cho, Seongho
    Kuo, C. -C. Jay
    [J]. IEEE MULTIMEDIA, 2012, 19 (01) : 50 - 59
  • [8] Hajj-Ahmad A, 2012, ASIAPAC SIGN INFO PR
  • [9] Ho A.T., 2015, Handbook of Digital Forensics of Multimedia Data and Devices
  • [10] Detection of Double MP3 Compression
    Liu, Qingzhong
    Sung, Andrew H.
    Qiao, Mengyu
    [J]. COGNITIVE COMPUTATION, 2010, 2 (04) : 291 - 296