Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries with Liquid or Solid Electrolyte

被引:184
|
作者
Ruess, Raffael [1 ,2 ]
Schweidler, Simon [3 ]
Hemmelmann, Hendrik l [1 ,2 ]
Conforto, Gioele [1 ]
Bielefeld, Anja [1 ,2 ,4 ]
Weber, Dominik A. [4 ]
Sann, Joachim [1 ,2 ]
Elm, Matthias T. [1 ,2 ,5 ]
Janek, Juergen [1 ,2 ,3 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res, D-35392 Giessen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Nanotechnol, Battery & Electrochem Lab, D-76344 Eggenstein Leopoldshafen, Germany
[4] Volkswagen AG, Grp Innovat, D-38440 Wolfsburg, Germany
[5] Justus Liebig Univ Giessen, Inst Expt Phys 1, D-35392 Giessen, Germany
关键词
INTERMITTENT TITRATION TECHNIQUE; LAYERED OXIDE CATHODES; ELECTROCHEMICAL KINETICS; STATE BATTERIES; ENERGY-DENSITY; CAPACITY FADE; CYCLE LIFE; NI-RICH; DIFFUSION; INTERCALATION;
D O I
10.1149/1945-7111/ab9a2c
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In liquid electrolyte-type lithium-ion batteries, Nickel-rich NCM (Li1+x(Ni1-y-zCoyMnz)(1)-xO(2)) as cathode active material allows for high discharge capacities and good material utilization, while solid-state batteries perform worse despite the past efforts in improving solid electrolyte conductivity and stability. In this work, we identify major reasons for this discrepancy by investigating the lithium transport kinetics in NCM-811 as typical Ni-rich material. During the first charge of battery half-cells, cracks form and are filled by the liquid electrolyte distributing inside the secondary particles of NCM. This drastically improves both the lithium chemical diffusion and charge transfer kinetics by increasing the electrochemically active surface area and reducing the effective particle size. Solid-state batteries are not affected by these cracks because of the mechanical rigidity of solid electrolytes. Hence, secondary particle cracking improves the initial charge and discharge kinetics of NCM in liquid electrolytes, while it degrades the corresponding kinetics in solid electrolytes. Accounting for these kinetic limitations by combining galvanostatic and potentiostatic discharge, we show that Coulombic efficiencies of about 89% at discharge capacities of about 173 mAh g(NCM)(-1) can be reached in solid-state battery half-cells with LiNi0.8Co0.1Mn0.1O2 as cathode active material and Li6PS5Cl as solid electrolyte. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Thermal and solid electrolyte interphase characterization of lithium-ion battery
    Chang, Chia-Chin
    Huang, Sin-Yi
    Chen, Wei-Hsin
    ENERGY, 2019, 174 : 999 - 1011
  • [32] The Influence of Current Ripples on the Lifetime of Lithium-Ion Batteries
    Brand, Martin Johannes
    Hofmann, Markus Hans
    Schuster, Simon S.
    Keil, Peter
    Jossen, Andreas
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) : 10438 - 10445
  • [33] Potassium carbonate as film forming electrolyte additive for lithium-ion batteries
    Zhuang, Quan-Chao
    Li, Jia
    Tian, Lei-Lei
    JOURNAL OF POWER SOURCES, 2013, 222 : 177 - 183
  • [34] Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries
    Bielefeld, Anja
    Weber, Dominik A.
    Ruess, Raffael
    Glavas, Vedran
    Janek, Juergen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (02)
  • [35] Assessment of all-solid-state lithium-ion batteries
    Braun, P.
    Uhlmann, C.
    Weiss, M.
    Weber, A.
    Ivers-Tiffee, E.
    JOURNAL OF POWER SOURCES, 2018, 393 : 119 - 127
  • [36] Operando Characterization Techniques for All-Solid-State Lithium-Ion Batteries
    Strauss, Florian
    Kitsche, David
    Ma, Yuan
    Teo, Jun Hao
    Goonetilleke, Damian
    Janek, Juergen
    Bianchini, Matteo
    Brezesinski, Torsten
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [37] On Electrolyte-Dependent Formation of Solid Electrolyte Interphase Film in Lithium-Ion Batteries: Strong Sensitivity to Small Structural Difference of Electrolyte Molecules
    Takenaka, Norio
    Suzuki, Yuichi
    Sakai, Hirofumi
    Nagaoka, Masataka
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (20) : 10874 - 10882
  • [38] Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries
    Xu, Yanjun
    Gao, Lina
    Wu, Xianzhang
    Zhang, Shengzhao
    Wang, Xiuli
    Gu, Changdong
    Xia, Xinhui
    Kong, Xueqian
    Tu, Jiangping
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (20) : 23743 - 23750
  • [39] Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy
    Unocic, Raymond R.
    Sun, Xiao-Guang
    Sacci, Robert L.
    Adamczyk, Leslie A.
    Alsem, Daan Hein
    Dai, Sheng
    Dudney, Nancy J.
    More, Karren L.
    MICROSCOPY AND MICROANALYSIS, 2014, 20 (04) : 1029 - 1037
  • [40] Impact of Mechanical Degradation in Polycrystalline NMC Particle on the Electrochemical Performance of Lithium-Ion Batteries
    Nagda, Vinit
    Ekstrom, Henrik
    Kulachenko, Artem
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (06)