STABILITY OF AN EXPONENTIAL-MONOMIAL FUNCTIONAL EQUATION

被引:1
作者
Choi, Chang-Kwon [1 ,2 ]
机构
[1] Kunsan Natl Univ, Dept Math, Gunsan 54150, South Korea
[2] Kunsan Natl Univ, Liberal Educ Inst, Gunsan 54150, South Korea
关键词
exponential functional equation; exponential-monomial functional equation; stability;
D O I
10.1017/S0004972718000011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a fixed positive integer and f : R -> C. As a generalisation of the superstability of the exponential functional equation we consider the functional inequalities vertical bar f((N)root x(N) + y(N)) - f(x) f(y)vertical bar <= phi(x), vertical bar f((N)root x(N) + y(N)) - f(x) f(y)vertical bar <= psi(x, y) for all x, y epsilon R, where phi : R -> R+ is an arbitrary function and psi : R-2 -> R+ satisfies a certain condition.
引用
收藏
页码:471 / 479
页数:9
相关论文
共 11 条
[1]  
[Anonymous], B ST U POLITEHNICA T
[2]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[3]  
[Anonymous], 1940, PROBLEMS MODERN MATH
[4]   STABILITY OF THE EQUATION F(X+Y)=F(X)F(Y) [J].
BAKER, J ;
LAWRENCE, J ;
ZORZITTO, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (02) :242-246
[5]  
BAKER JA, 1980, P AM MATH SOC, V80, P411, DOI 10.2307/2043730
[6]   Two general theorems on superstability of functional equations [J].
Brzdek, Janusz ;
Najdecki, Adam ;
Xu, Bing .
AEQUATIONES MATHEMATICAE, 2015, 89 (03) :771-783
[7]  
Brzdk J, 2017, ADV THEORY NONLINEAR, V1, P125
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
Jung SM, 2011, SPRINGER SER OPTIM A, V48, P1, DOI 10.1007/978-1-4419-9637-4