The extended F-expansion method and its application for a class of nonlinear evolution equations

被引:333
作者
Abdou, M. A. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Phys, Theoret Res Grp, Mansoura 35516, Egypt
关键词
D O I
10.1016/j.chaos.2005.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By means of a simple transformation technique, we have shown that the higher-order nonlinear Schrodinger equation in nonlinear optical fibers, a new Hamiltonian amplitude equation, generalized Hirota-Satsuma coupled system and generalized ZK-BBM equation can be reduced to the elliptic-like equation. Then, the extended F-expansion method is used to obtain a series of solutions including the single and the combined nondegenerative Jacobi elliptic function solutions and their degenerative solutions to the above mentioned class of nonlinear evolution equations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 17 条
[1]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[2]   Modified extended tanh-function method for solving nonlinear partial differential equations [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
PHYSICS LETTERS A, 2002, 299 (2-3) :179-188
[3]   Modified extended tanh-function method and its applications to nonlinear equations [J].
Elwakil, SA ;
El-Labany, SK ;
Zahran, MA ;
Sabry, R .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (02) :403-412
[5]   Exact solutions with Jacobi elliptic functions of two nonlinear models for ion-acoustic plasma waves [J].
Khater, AH ;
Hassan, MM ;
Temsah, RS .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (05) :1431-1435
[6]   SIMPLE DERIVATION OF BACKLUND TRANSFORMATION FROM RICCATI FORM OF INVERSE METHOD [J].
KONNO, K ;
WADATI, M .
PROGRESS OF THEORETICAL PHYSICS, 1975, 53 (06) :1652-1656
[7]   Exact solutions for the higher-order nonlinear Schordinger equation in nonlinear optical fibres [J].
Liu, CP .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :949-955
[8]   Jacobi elliptic function solutions of some nonlinear PDEs [J].
Liu, JB ;
Yang, L ;
Yang, KQ .
PHYSICS LETTERS A, 2004, 325 (3-4) :268-275
[9]   The extended F-expansion method and exact solutions of nonlinear PDEs [J].
Liu, JB ;
Yang, KQ .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :111-121
[10]  
Matveev V. B., 1991, Darboux transformation and solitons, DOI DOI 10.1007/978-3-662-00922-2