The role of microRNAs in copper and cadmium homeostasis

被引:84
作者
Ding, Yan-Fei [1 ]
Zhu, Cheng [1 ]
机构
[1] Zhejiang Univ, State Key Lab Plant Physiol & Biochem, Coll Life Sci, Hangzhou 310029, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MicroRNAs; Copper stress; Cadmium stress; Regulatory network; STRESS-REGULATED MICRORNAS; OXIDATIVE STRESS; COMPUTATIONAL IDENTIFICATION; SUPEROXIDE-DISMUTASE; DOWN-REGULATION; ARABIDOPSIS; PROTEIN; CHLAMYDOMONAS; EXPRESSION; RESPONSES;
D O I
10.1016/j.bbrc.2009.05.137
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 42 条
[1]   MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in arabidopsis [J].
Abdel-Ghany, Salah E. ;
Pilon, Marinus .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (23) :15932-15945
[2]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[3]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[4]   Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba:: Implication of reactive oxygen species as common signals [J].
Babu, TS ;
Akhtar, TA ;
Lampi, MA ;
Tripuranthakam, S ;
Dixon, DG ;
Greenberg, BM .
PLANT AND CELL PHYSIOLOGY, 2003, 44 (12) :1320-1329
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   Cold stress regulation of gene expression in plants [J].
Chinnusamy, Viswanathan ;
Zhu, Jianhua ;
Zhu, Jian-Kang .
TRENDS IN PLANT SCIENCE, 2007, 12 (10) :444-451
[7]   Regulation of phosphate homeostasis by microRNA in Arabidopsis [J].
Chiou, TJ ;
Aung, K ;
Lin, SI ;
Wu, CC ;
Chiang, SF ;
Su, CL .
PLANT CELL, 2006, 18 (02) :412-421
[8]   Molecular mechanisms of plant metal tolerance and homeostasis [J].
Clemens, S .
PLANTA, 2001, 212 (04) :475-486
[9]   AGRIS:: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors -: art. no. 25 [J].
Davuluri, RV ;
Sun, H ;
Palaniswamy, SK ;
Matthews, N ;
Molina, C ;
Kurtz, M ;
Grotewold, E .
BMC BIOINFORMATICS, 2003, 4 (1)
[10]   The role of regulated protein degradation in auxin response [J].
Dharmasiri, S ;
Estelle, M .
PLANT MOLECULAR BIOLOGY, 2002, 49 (3-4) :401-409