Evaluation of generality of inductive learning for preprocessing in machine translation

被引:0
|
作者
Nagashima, Y [1 ]
Araki, K [1 ]
Tochinai, K [1 ]
机构
[1] Hokkaido Univ, Div Elect & Informat Engn, Grad Sch Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan
来源
2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE | 2002年
关键词
preprocessing; machine translation; inductive learning; generality;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are many machine translation systems recently. However, the results of these machine translation systems include various errors on a selection of translated word, a dependency relation and so on. The purpose of our research is to correct these errors automatically and improve the translation accuracy by preprocessing. This paper presents a method for preprocessing in machine translation system using inductive learning and results of evaluation experiment.
引用
收藏
页码:921 / 926
页数:6
相关论文
共 50 条
  • [41] Fast Streaming Translation Using Machine Learning with Transformer
    Qiu, Jiabao
    Moh, Melody
    Moh, Teng-Sheng
    ACMSE 2021: PROCEEDINGS OF THE 2021 ACM SOUTHEAST CONFERENCE, 2021, : 9 - 16
  • [42] Enhancing machine translation with quality estimation and reinforcement learning
    Yang, Zijian Gyozo
    Laki, Laszlo Janos
    ANNALES MATHEMATICAE ET INFORMATICAE, 2023, 58 : 182 - 190
  • [43] Learning finite-state models for machine translation
    Francisco Casacuberta
    Enrique Vidal
    Machine Learning, 2007, 66 : 69 - 91
  • [44] Learning finite-state models for machine translation
    Casacuberta, Francisco
    Vidal, Enrique
    MACHINE LEARNING, 2007, 66 (01) : 69 - 91
  • [45] Can automated machine translation evaluation metrics be used to assess students' interpretation in the language learning classroom?
    Han, Chao
    Lu, Xiaolei
    COMPUTER ASSISTED LANGUAGE LEARNING, 2023, 36 (5-6) : 1064 - 1087
  • [46] Metric for Evaluation of Machine Translation Quality on the bases of Edit Distances and Reverse Translation
    Kornilov, V. S.
    Glushan, V. M.
    Lozovoy, A. Yu
    2021 IEEE 15TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT2021), 2021,
  • [47] QUALES: Machine Translation Quality Estimation via Supervised and Unsupervised Machine Learning
    Etchegoyhen, Thierry
    Martinez Garcia, Eva
    Azpeitia, Andoni
    Alegria, Inaki
    Labaka, Gorka
    Otegi, Arantza
    Sarasola, Kepa
    Cortes, Itziar
    Jauregi, Amaia
    Ellakuria, Igor
    Calonge, Eusebi
    Martin, Maite
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2018, (61): : 143 - 146
  • [48] Machine Learning Based Optimized Pruning Approach for Decoding in Statistical Machine Translation
    Banik, Debajyoty
    Ekbal, Asif
    Bhattacharyya, Pushpak
    IEEE ACCESS, 2019, 7 : 1736 - 1751
  • [49] ILA4: Overcoming missing values in machine learning datasets - An inductive learning approach
    Elhassan, Ammar
    Abu-Soud, Saleh M.
    Alghanim, Firas
    Salameh, Walid
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (07) : 4284 - 4295
  • [50] MULTIMODALITY AND EVALUATION OF MACHINE TRANSLATION: A PROPOSAL FOR INVESTIGATING INTERSEMIOTIC MISMATCHES GENERATED BY THE USE OF MACHINE TRANSLATION IN MULTIMODAL DOCUMENTS
    Pires, Thiago Blanch
    TEXTO LIVRE-LINGUAGEM E TECNOLOGIA, 2018, 11 (01): : 82 - 102