Bistable phase synchronization and chaos in a system of coupled van der Pol-Duffing oscillators

被引:18
作者
Kozlov, AK [1 ]
Sushchik, MM [1 ]
Molkov, YI [1 ]
Kuznetsov, AS [1 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603600, Russia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1999年 / 9卷 / 12期
关键词
D O I
10.1142/S0218127499001747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analysis of numerical solutions for a system of two van der Pol-Duffing oscillators with nonlinear coupling showed that there exist chaotic switchings (occurring at irregular time intervals) between two oscillatory regimes differing by nearly time-constant phase shifts between the coupled subsystems. The analysis includes the investigation of bifurcations of the periodic motions corresponding to synchronization of two subsystems, finding stability regions of synchronization regimes and scenarios of the transitions to chaos.
引用
收藏
页码:2271 / 2277
页数:7
相关论文
共 20 条
[1]  
Abarbanel H. D. I., 1996, Physics-Uspekhi, V39, P337, DOI 10.1070/PU1996v039n04ABEH000141
[2]  
AFRAIMOVICH VS, 1991, THEORY BIFURCATIONS
[3]  
[Anonymous], STOCHASTIC CHAOTIC O
[4]  
BERGE P, 1988, ORDRE CHAOS
[5]   Coordination dynamics of trajectory formation [J].
Buchanan, JJ ;
Kelso, JAS ;
Fuchs, A .
BIOLOGICAL CYBERNETICS, 1996, 74 (01) :41-54
[6]   Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies [J].
Fuchs, A ;
Jirsa, VK ;
Haken, H ;
Kelso, JAS .
BIOLOGICAL CYBERNETICS, 1996, 74 (01) :21-30
[7]   Locomotor-like movements evoked by leg muscle vibration in humans [J].
Gurfinkel, VS ;
Levik, YS ;
Kazennikov, OV ;
Selionov, VA .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (05) :1608-1612
[8]   A THEORETICAL-MODEL OF PHASE-TRANSITIONS IN HUMAN HAND MOVEMENTS [J].
HAKEN, H ;
KELSO, JAS ;
BUNZ, H .
BIOLOGICAL CYBERNETICS, 1985, 51 (05) :347-356
[9]  
Haken H., 1987, Advanced Synergetics
[10]  
HAKEN H, 1988, INFORMATION SELF ORG