Dynamic analysis of hyperspectral vegetation indices

被引:1
|
作者
Zhang, B [1 ]
Zhang, X [1 ]
Liu, TJ [1 ]
Xu, GX [1 ]
Zheng, LF [1 ]
Tong, QX [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, Applicat Remote Sensing Lab, Beijing 100101, Peoples R China
关键词
hyperspectral; multi-temporal; vegetation indices; index image cube;
D O I
10.1117/12.441363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Crop physiology analysis and growth monitoring are important elements for precision agriculture management. Remote sensing technology supplies us more selections and available spaces in this dynamic change study by producing images of different spatial, spectral and temporal resolutions. Especially, the remote sensing data of high spectral and high temporal resolution will play a key role in land cover studies at national, regional and global scales. In this paper, Multi-temporal Index Image Cube (MIIC) is proposed, which is an effective data structure for the parameterization of multi-dimensions spectral curve. MIIC is very useful for supporting the dynamic analysis on vegetation phenological and physiological characters. Based on multi-temporal meteorological satellite data and multi-temporal ground spectral measurement data, the temporal characters of different vegetation physiological parameters are contrasted and analyzed from temporal index image cube. In addition, MIIC also has very wide use in hyperspectral remote sensing applications.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 50 条
  • [41] Topographic effects on the determination of hyperspectral vegetation indices: a case study in southeastern Brazil
    de Oliveira, Lucas Maia
    Galvao, Lenio Soares
    Ponzoni, Flavio Jorge
    GEOCARTO INTERNATIONAL, 2021, 36 (19) : 2186 - 2203
  • [42] Incidence Angle Dependency of Leaf Vegetation Indices from Hyperspectral Lidar Measurements
    Kaasalainen, Sanna
    Nevalainen, Olli
    Hakala, Teemu
    Anttila, Kati
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2016, (02): : 75 - 84
  • [43] Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method
    Liang, Liang
    Di, Liping
    Zhang, Lianpeng
    Deng, Meixia
    Qin, Zhihao
    Zhao, Shuhe
    Lin, Hui
    REMOTE SENSING OF ENVIRONMENT, 2015, 165 : 123 - 134
  • [44] Estimating Grassland Chlorophyll Content at Canopy Scales Using Hyperspectral Vegetation Indices
    Karakoc, Ahmet
    Karabulut, Murat
    JOURNAL OF GEOGRAPHY-COGRAFYA DERGISI, 2021, (43): : 77 - 91
  • [45] Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method
    Liang, Liang
    Qin, Zhihao
    Zhao, Shuhe
    Di, Liping
    Zhang, Chao
    Deng, Meixia
    Lin, Hui
    Zhang, Lianpeng
    Wang, Lijuan
    Liu, Zhixiao
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (13) : 2923 - 2949
  • [46] Comparison of the sensor dependence of vegetation indices based on Hyperion and CHRIS hyperspectral data
    Chen, Xiaoping
    Zhang, Lifu
    Zhang, Xia
    Liu, Bo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (06) : 2200 - 2215
  • [47] A shadow identification method using vegetation indices derived from hyperspectral data
    Liu, Xiaolong
    Hou, Zhiting
    Shi, Zhengtao
    Bo, Yanchen
    Cheng, Jiehai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (19) : 5357 - 5373
  • [48] Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices
    Zhang, Xuan
    Sun, Hui
    Qiao, Xingxing
    Yan, Xiaobin
    Feng, Meichen
    Xiao, Lujie
    Song, Xiaoyan
    Zhang, Meijun
    Shafiq, Fahad
    Yang, Wude
    Wang, Chao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193
  • [49] Estimation of foliar pigment concentration in floating macrophytes using hyperspectral vegetation indices
    Proctor, Cameron
    He, Yuhong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (22) : 8011 - 8027
  • [50] Fourier analysis for detecting vegetation in hyperspectral images
    Chanchi-Golondrino, Gabriel E.
    Ospina-Alarcon, Manuel A.
    Saba, Manuel
    INGENIERIA Y COMPETITIVIDAD, 2024, 26 (03):