Dynamic analysis of hyperspectral vegetation indices

被引:1
|
作者
Zhang, B [1 ]
Zhang, X [1 ]
Liu, TJ [1 ]
Xu, GX [1 ]
Zheng, LF [1 ]
Tong, QX [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, Applicat Remote Sensing Lab, Beijing 100101, Peoples R China
关键词
hyperspectral; multi-temporal; vegetation indices; index image cube;
D O I
10.1117/12.441363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Crop physiology analysis and growth monitoring are important elements for precision agriculture management. Remote sensing technology supplies us more selections and available spaces in this dynamic change study by producing images of different spatial, spectral and temporal resolutions. Especially, the remote sensing data of high spectral and high temporal resolution will play a key role in land cover studies at national, regional and global scales. In this paper, Multi-temporal Index Image Cube (MIIC) is proposed, which is an effective data structure for the parameterization of multi-dimensions spectral curve. MIIC is very useful for supporting the dynamic analysis on vegetation phenological and physiological characters. Based on multi-temporal meteorological satellite data and multi-temporal ground spectral measurement data, the temporal characters of different vegetation physiological parameters are contrasted and analyzed from temporal index image cube. In addition, MIIC also has very wide use in hyperspectral remote sensing applications.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 50 条
  • [31] ANALYSIS OF TOPOGRAPHIC EFFECTS ON VEGETATION INDICES
    Zhou, Junxiong
    Chen, Jin
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6059 - 6062
  • [32] Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves
    Lu, Jingshan
    Yang, Tiancheng
    Su, Xi
    Qi, Hao
    Yao, Xia
    Cheng, Tao
    Zhu, Yan
    Cao, Weixing
    Tian, Yongchao
    PRECISION AGRICULTURE, 2020, 21 (02) : 324 - 348
  • [33] Hyperspectral Vegetation Indices to Assess Water and Nitrogen Status of Sweet Maize Crop
    Colovic, Milica
    Yu, Kang
    Todorovic, Mladen
    Cantore, Vito
    Hamze, Mohamad
    Albrizio, Rossella
    Stellacci, Anna Maria
    AGRONOMY-BASEL, 2022, 12 (09):
  • [34] Diurnal variation in hyperspectral vegetation indices related to winter wheat biomass formation
    Sticksel E.
    Schächtl J.
    Huber G.
    Liebler J.
    Maidl F.-X.
    Precision Agriculture, 2004, 5 (5) : 509 - 520
  • [35] Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation
    Peng, Yu
    Fan, Min
    Wang, Qinghui
    Lan, Wenjuan
    Long, Yating
    ECOLOGY AND EVOLUTION, 2018, 8 (14): : 7068 - 7078
  • [36] View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest
    Galvao, Lenio Soares
    Breunig, Fabio Marcelo
    dos Santos, Joao Roberto
    de Moura, Yhasmin Mendes
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 21 : 291 - 300
  • [37] Use of Hyperspectral Image Data Outperforms Vegetation Indices in Prediction of Maize Yield
    Aguate, Fernando M.
    Trachsel, Samuel
    Gonzalez Perez, Lorena
    Burgueno, Juan
    Crossa, Jose
    Balzarini, Monica
    Gouache, David
    Bogard, Matthieu
    de los Campos, Gustavo
    CROP SCIENCE, 2017, 57 (05) : 2517 - 2524
  • [38] Narrow-band and derivative-based vegetation indices for hyperspectral data
    Thorp, KR
    Tian, L
    Yao, H
    Tang, L
    TRANSACTIONS OF THE ASAE, 2004, 47 (01): : 291 - 299
  • [39] Comparison of hyperspectral retrievals with vegetation water indices for leaf and canopy water content
    Hunt, E. Raymond
    Daughtry, Craig S. T.
    Qu, John J.
    Wang, Lingli
    Hao, Xianjun
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY VIII, 2011, 8156
  • [40] Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves
    Jingshan Lu
    Tiancheng Yang
    Xi Su
    Hao Qi
    Xia Yao
    Tao Cheng
    Yan Zhu
    Weixing Cao
    Yongchao Tian
    Precision Agriculture, 2020, 21 : 324 - 348