Dynamic analysis of hyperspectral vegetation indices

被引:1
|
作者
Zhang, B [1 ]
Zhang, X [1 ]
Liu, TJ [1 ]
Xu, GX [1 ]
Zheng, LF [1 ]
Tong, QX [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, Applicat Remote Sensing Lab, Beijing 100101, Peoples R China
关键词
hyperspectral; multi-temporal; vegetation indices; index image cube;
D O I
10.1117/12.441363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Crop physiology analysis and growth monitoring are important elements for precision agriculture management. Remote sensing technology supplies us more selections and available spaces in this dynamic change study by producing images of different spatial, spectral and temporal resolutions. Especially, the remote sensing data of high spectral and high temporal resolution will play a key role in land cover studies at national, regional and global scales. In this paper, Multi-temporal Index Image Cube (MIIC) is proposed, which is an effective data structure for the parameterization of multi-dimensions spectral curve. MIIC is very useful for supporting the dynamic analysis on vegetation phenological and physiological characters. Based on multi-temporal meteorological satellite data and multi-temporal ground spectral measurement data, the temporal characters of different vegetation physiological parameters are contrasted and analyzed from temporal index image cube. In addition, MIIC also has very wide use in hyperspectral remote sensing applications.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 50 条
  • [1] Estimation of water content in vegetation from hyperspectral vegetation indices
    Sagalovich, V.N.
    Falkov, E.Ya.
    Tzareva, T.I.
    Issledovanie Zemli iz Kosmosa, 2004, (01): : 63 - 67
  • [2] Identification of hyperspectral vegetation indices for Mediterranean pasture characterization
    Fava, F.
    Colombo, R.
    Bocchi, S.
    Meroni, M.
    Sitzia, M.
    Fois, N.
    Zucca, C.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (04) : 233 - 243
  • [3] MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES
    Wang, Qian
    Li, Cunjun
    Wang, Jihua
    Huang, Yuanfang
    Song, Xiaoyu
    Huang, Wenjiang
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2012, 18 (05): : 537 - 546
  • [4] Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
    Thenkabail, PS
    Smith, RB
    De Pauw, E
    REMOTE SENSING OF ENVIRONMENT, 2000, 71 (02) : 158 - 182
  • [5] Hyperspectral vegetation indices and their relationships with rice agronomics variables
    Huang, JF
    Wang, FM
    Wang, XZ
    Tang, YL
    Wang, RC
    ECOSYSTEMS' DYNAMICS, AGRICULTURAL REMOTE SENSING AND MODELING, AND SITE-SPECIFIC AGRICULTURE, 2003, 5153 : 186 - 194
  • [6] A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images
    Ruiz, D. A.
    Bacca, E. B.
    Caicedo, E. F.
    ENTRE CIENCIA E INGENIERIA, 2019, 13 (26): : 51 - 58
  • [7] DETECTING VEGETATION RESPONSE TO OIL POLLUTION USING HYPERSPECTRAL INDICES
    Onyia, N. N.
    Balzter, H.
    Berrio, J. C.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3963 - 3966
  • [8] Wheat Yield Estimation Study Using Hyperspectral Vegetation Indices
    Wu, Renhong
    Fan, Yuqing
    Zhang, Liuya
    Yuan, Debao
    Gao, Guitang
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [9] COMPARISON OF HYPERSPECTRAL VEGETATION INDICES BASED ON CASI AIRBORNE DATA
    She, Xiaojun
    Zhang, Lifu
    Huang, Changping
    Wang, Siheng
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4532 - 4534
  • [10] Two new hyperspectral indices for comparing vegetation chlorophyll content
    Frazier, Amy E.
    Wang, Le
    Chen, Jin
    GEO-SPATIAL INFORMATION SCIENCE, 2014, 17 (01) : 17 - 25