A highly conducting graphene film with dual-side molecular n-doping

被引:26
作者
Kim, Youngsoo [1 ,2 ]
Park, Jaesung [3 ,4 ]
Kang, Junmo [5 ]
Yoo, Je Min [1 ]
Choi, Kyoungjun [1 ]
Kim, Eun Sun [1 ]
Choi, Jae-Boong [5 ]
Hwang, Chanyong [3 ]
Novoselov, K. S. [4 ]
Hong, Byung Hee [1 ]
机构
[1] Seoul Natl Univ, Dept Chem, 1 Gwanak Ro, Seoul 151742, South Korea
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea
[3] Korea Res Inst Stand & Sci, Ctr Nanometrol, Taejon 305340, South Korea
[4] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[5] Sungkyunkwan Univ, Sungkyunkwan Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
SELF-ASSEMBLED MONOLAYERS; SINGLE-LAYER GRAPHENE; DOPED GRAPHENE; TRANSISTORS; ELECTRODES; SCATTERING; RAMAN;
D O I
10.1039/c4nr00479e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Doping is an efficient way to engineer the conductivity and the work function of graphene, which is, however, limited to wet-chemical doping or metal deposition particularly for n-doping, Here, we report a simple method of modulating the electrical conductivity of graphene by dual-side molecular n-doping with diethylenetriamine (DETA) on the top and amine-functionalized self-assembled monolayers (SAMs) at the bottom. The resulting charge carrier density of graphene is as high as -1.7 x 10(13) cm(-2), and the sheet resistance is as low as, similar to 86 +/- 39 Omega sq(-1), which is believed to be the lowest sheet resistance of monolayer graphene reported so far. This facile dual-side n-doping strategy would be very useful to optimize the performance of various graphene-based electronic devices.
引用
收藏
页码:9545 / 9549
页数:5
相关论文
共 41 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]  
Ando T., 2006, J PHYS SOC JPN, V75
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]  
Bao Q., 2012, ACS NANO, V6
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[8]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[9]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[10]   Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications [J].
DiBenedetto, Sara A. ;
Facchetti, Antonio ;
Ratner, Mark A. ;
Marks, Tobin J. .
ADVANCED MATERIALS, 2009, 21 (14-15) :1407-1433