Eigenvalue monotonicity for the Ricci-Hamilton flow

被引:42
作者
Ma, Li [1 ]
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Ricci-Hamilton flow; eigenvalue; monotonicity;
D O I
10.1007/s10455-006-9018-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short note, we discuss the monotonicity of the eigen-values of the Laplacian operator to the Ricci-Hamilton flow on a compact or a complete non-compact Riemannian manifold. We show that the eigenvalue of the Lapacian operator on a compact domain associated with the evolving Ricci flow is non-decreasing provided the scalar curvature having a non-negative lower bound and Einstein tensor being not too negative. This result will be useful in the study of blow-up models of the Ricci-Hamilton flow.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 5 条
[1]  
DETURCK DM, 1983, J DIFFER GEOM, V18, P157
[2]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[3]  
Ma L., 2004, RICCI HAMILTON FLOW
[4]  
PERELMAN G, MATHDG0211159, P9
[5]  
Shi W., 1989, J DIFFER GEOM, V30, P353