Multiple ζ-motives and moduli spaces M0,n

被引:53
作者
Goncharov, AB [1 ]
Manin, YI
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Max Planck Inst Math, D-5300 Bonn, Germany
关键词
multiple zeta-values; moduli spaces; mixed Tate motives;
D O I
10.1112/S0010437X03000125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a natural construction of framed mixed Tate motives unramified over Z whose periods are the multiple zeta-values. Namely, for each convergent multiple zeta-value we define two boundary divisors A and B in the moduli space (M) over bar (0,n+3) of stable curves of genus zero. The corresponding multiple zeta-motive is the nth cohomology of the pair ((M) over bar (0,n+3)-A, B).
引用
收藏
页码:1 / 14
页数:14
相关论文
共 18 条
[1]  
[Anonymous], MATHAG0103059
[2]  
Deligne P., GROUPES FONDAMENTAUX
[3]  
DELIGNE P, 1972, LECT NOTES MATH, V288, P1
[4]  
Devadoss S.L., 1999, CONT MATH, V239, P91, DOI DOI 10.1090/CONM/239/03599
[5]  
Drinfeld V.G., 1991, Leningrad Math. J., V2, P829
[6]  
EULER L, 1917, OPERA OMNIA 1, V15, P217
[7]   Volumes of hyperbolic manifolds and mixed Tate motives [J].
Goncharov, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :569-618
[8]  
Goncharov A., 1995, P INT C MATH VOLS 1, V1, P374
[9]  
Goncharov AB, 2001, PROG MATH, V201, P361
[10]  
GONCHAROV AB, MATHAG0202154