A NOTE ON A NONPARAMETRIC REGRESSION TEST THROUGH PENALIZED SPLINES

被引:1
|
作者
Chen, Huaihou [1 ]
Wang, Yuanjia [2 ]
Li, Runze [3 ,4 ]
Shear, Katherine [5 ]
机构
[1] NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10016 USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[3] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[4] Penn State Univ, Methodol Ctr, University Pk, PA 16802 USA
[5] Columbia Univ, Sch Social Work, New York, NY 10027 USA
关键词
Goodness of fit; likelihood ratio test; nonparametric regression; partial linear model; spectral decomposition; LIKELIHOOD RATIO TESTS; LINEAR MIXED MODELS; GOODNESS-OF-FIT; POLYNOMIAL REGRESSION; SEMIPARAMETRIC REGRESSION; ASYMPTOTICS; VARIANCE; HYPOTHESIS;
D O I
10.5705/ss.2012.230
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We examine a test of a nonparametric regression function based on penalized spline smoothing. We show that, similarly to a penalized spline estimator, the asymptotic power of the penalized spline test falls into a small-K or a large-K scenarios characterized by the number of knots K and the smoothing parameter. However, the optimal rate of K and the smoothing parameter maximizing power for testing is different from the optimal rate minimizing the mean squared error for estimation. Our investigation reveals that compared to estimation, some under-smoothing may be desirable for the testing problems. Furthermore, we compare the proposed test with the likelihood ratio test (LRT). We show that when the true function is more complicated, containing multiple modes, the test proposed here may have greater power than LRT. Finally, we investigate the properties of the test through simulations and apply it to two data examples.
引用
收藏
页码:1143 / 1160
页数:18
相关论文
共 50 条
  • [1] A note on penalized minimum distance estimation in nonparametric regression
    Bunea, F
    Wegkamp, MH
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (03): : 267 - 274
  • [2] A NOTE ON THE CONSISTENT ESTIMATOR OF NONPARAMETRIC REGRESSION CONSTRUCTED BY SPLINES
    ZHU, LX
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (11) : 65 - 70
  • [3] BIVARIATE PENALIZED SPLINES FOR REGRESSION
    Lai, Ming-Jun
    Wang, Li
    STATISTICA SINICA, 2013, 23 (03) : 1399 - 1417
  • [4] Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures
    Wiesenfarth, Manuel
    Matias Hisgen, Carlos
    Kneib, Thomas
    Cadarso-Suarez, Carmen
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2014, 32 (03) : 468 - 482
  • [5] Cardinal Splines in Nonparametric Regression
    Cho, J.
    Levit, B.
    MATHEMATICAL METHODS OF STATISTICS, 2008, 17 (01) : 19 - 34
  • [6] S-Estimation for Penalized Regression Splines
    Tharmaratnam, Kukatharmini
    Claeskens, Gerda
    Croux, Christophe
    Saubian-Barrera, Matias
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (03) : 609 - 625
  • [7] Smoothness Selection for Penalized Quantile Regression Splines
    Reiss, Philip T.
    Huang, Lei
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [8] On semiparametric regression with O'Sullivan penalized splines
    Wand, M. P.
    Ormerod, J. T.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (02) : 179 - 198
  • [9] Spatially adaptive Bayesian penalized regression splines (P-splines)
    Baladandayuthapani, V
    Mallick, BK
    Carroll, RJ
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) : 378 - 394
  • [10] Local asymptotics for nonparametric quantile regression with regression splines
    Zhao, Weihua
    Lian, Heng
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 209 - 215