The strong law of large numbers for negatively dependent generalized Gaussian random variables

被引:19
作者
Amini, M
Azarnoosh, HA
Bozorgnia, A
机构
[1] Sistan & Baluchestan Univ, Fac Sci, Dept Math, Zahedan, Iran
[2] Ferdowsi Univ, Fac Math Sci, Dept Stat, Mashhad, Iran
关键词
strong law of large numbers; negatively dependent; generalized Gaussian; weighted sums; martingale;
D O I
10.1081/SAP-120037623
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the strong law of large numbers for the weighted sums T-n = Sigma(k=1)(infinity) a(nk)X(k) where {X-n, n greater than or equal to 1} is a sequence of negative dependent generalized Gaussian random variables under the condition that E[X-n, \\Fn-1] = 0, F-n = sigma(X-1,...,X-n) and a(nk) is an array of nonnegative real numbers such that for each n greater than or equal to 1, A(n) = Sigma(k=1)(infinity) a(nk)(2) < ∞.
引用
收藏
页码:893 / 901
页数:9
相关论文
共 7 条
[1]  
BOZORGNIA A, 1993, LIMIT THEOREMS ND RV
[2]  
BOZORGNIA A, 1996, WORLD C NONL AN 92, P1639
[3]   SOME CONVERGENCE THEOREMS FOR INDEPENCENT RANDOM VARIABLES [J].
CHOW, YS .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1482-&
[4]  
CHOW YS, 1978, PROBABILITY THEORY, P232
[5]   SOME CONCEPTS OF DEPENDENCE [J].
LEHMANN, EL .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05) :1137-&
[6]  
Ouy K.C., 1976, J NAT CHIAO TUNG U, V1, P227
[7]  
TAYLOR RL, 1987, TEACH MATH, P295