The heat kernel and Hardy's theorem on symmetric spaces of noncompact type

被引:11
|
作者
Narayanan, EK
Ray, SK
机构
[1] Indian Stat Inst, Stat Math Unit, Bangalore 560059, Karnataka, India
[2] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2002年 / 112卷 / 02期
关键词
Hardy's theorem; uncertainty principles; symmetric spaces;
D O I
10.1007/BF02829756
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For symmetric spaces of noncompact type we prove an analogue of Hardy's theorem which characterizes the heat kernel in terms of its order of magnitude and that of its Fourier transform.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条
  • [31] The two-sided quaternionic dunkl transform and hardy’s theorem
    Mohamed Essenhajy
    Said Fahlaoui
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1 - 13
  • [32] Geometry of symmetric spaces of type EVI
    Petrov, Victor A.
    Semenov, Andrei V.
    JOURNAL OF ALGEBRA, 2024, 656 : 394 - 405
  • [33] GEOMETRY OF SYMMETRIC SPACES OF TYPE EIII
    Petrov, V. A.
    Semenov, A. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, : 1055 - 1061
  • [34] An Lp version of Hardy's theorem for the Dunkl transform
    Gallardo, L
    Trimèche, K
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 77 : 371 - 385
  • [35] A COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS IN SYMMETRIC SPACES SATISFYING AN INTEGRAL TYPE CONTRACTIVE CONDITION
    Tiwari, Rakesh
    Shrivastava, S. K.
    Pathak, V. K.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (02): : 151 - 158
  • [36] Hardy's theorem for n spin-s particles in entanglement
    Wu, XH
    Zhao, YM
    Hsia, YF
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1998, 30 (01) : 17 - 20
  • [37] Inclusions and noninclusions of Hardy type spaces on certain nondoubling manifolds
    Martini, Alessio
    Meda, Stefano
    Vallarino, Maria
    Veronelli, Giona
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (03)
  • [38] Lp version of Hardy's theorem on semisimple Lie groups
    Narayanan, EK
    Ray, SK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) : 1859 - 1866
  • [39] Hardy's Theorem for Gabor Transform on Nilpotent Lie Groups
    Smaoui, Kais
    Abid, Khouloud
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (03)
  • [40] Hardy’s Theorem for Gabor Transform on Nilpotent Lie Groups
    Kais Smaoui
    Khouloud Abid
    Journal of Fourier Analysis and Applications, 2022, 28