Digital lattice gauge theories

被引:102
作者
Zohar, Erez [1 ]
Farace, Alessandro [1 ]
Reznik, Benni [2 ]
Cirac, J. Ignacio [1 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
关键词
ENTANGLED PAIR STATES; MATRIX PRODUCT STATES; QUANTUM; ATOMS; SIMULATION; CONFINEMENT; DYNAMICS; PHYSICS;
D O I
10.1103/PhysRevA.95.023604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 + 1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z(3) lattice gauge theory with dynamical fermionic matter in 2 + 1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
引用
收藏
页数:23
相关论文
共 89 条
  • [1] Creation, Manipulation, and Detection of Abelian and Non-Abelian Anyons in Optical Lattices
    Aguado, M.
    Brennen, G. K.
    Verstraete, F.
    Cirac, J. I.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (26)
  • [2] [Anonymous], ARXIV13108555
  • [3] [Anonymous], 2013, POS LATTICE 2013
  • [4] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice
    Bakr, Waseem S.
    Gillen, Jonathon I.
    Peng, Amy
    Foelling, Simon
    Greiner, Markus
    [J]. NATURE, 2009, 462 (7269) : 74 - U80
  • [5] Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories
    Banerjee, D.
    Boegli, M.
    Dalmonte, M.
    Rico, E.
    Stebler, P.
    Wiese, U. -J.
    Zoller, P.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [6] Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench
    Banerjee, D.
    Dalmonte, M.
    Mueller, M.
    Rico, E.
    Stebler, P.
    Wiese, U. -J.
    Zoller, P.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [7] Thermal evolution of the Schwinger model with matrix product operators
    Banuls, M. C.
    Cichy, K.
    Cirac, J. I.
    Jansen, K.
    Saito, H.
    [J]. PHYSICAL REVIEW D, 2015, 92 (03):
  • [8] The mass spectrum of the Schwinger model with matrix product states
    Banuls, M. C.
    Cichy, K.
    Cirac, J. I.
    Jansen, K.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [9] Chiral condensate in the Schwinger model with matrix product operators
    Banuls, Mari Carmen
    Cichy, Krzysztof
    Jansen, Karl
    Saito, Hana
    [J]. PHYSICAL REVIEW D, 2016, 93 (09)
  • [10] Efficient quantum algorithms for simulating sparse Hamiltonians
    Berry, Dominic W.
    Ahokas, Graeme
    Cleve, Richard
    Sanders, Barry C.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 359 - 371