Free fermions at the edge of interacting systems

被引:27
作者
Stephan, Jean-Marie [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, UMR5208,Inst Camille Jordan, F-69622 Villeurbanne, France
来源
SCIPOST PHYSICS | 2019年 / 6卷 / 05期
关键词
GROWTH-PROCESSES; DISTRIBUTIONS; TEMPERATURE; PROBABILITY; SPECTRUM; MATRICES; BOSONS; CHAIN; STATE; SHAPE;
D O I
10.21468/SciPostPhys.6.5.057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the edge behavior of inhomogeneous one-dimensional quantum systems, such as Lieb-Liniger models in traps or spin chains in spatially varying fields. For free systems these fall into several universality classes, the most generic one being governed by the Tracy-Widom distribution. We investigate in this paper the effect of interactions. Using semiclassical arguments, we show that since the density vanishes to leading order, the strong interactions in the bulk are renormalized to zero at the edge, which simply explains the survival of Tracy-Widom scaling in general. For integrable systems, it is possible to push this argument further, and determine exactly the remaining length scale which controls the variance of the edge distribution. This analytical prediction is checked numerically, with excellent agreement. We also study numerically the edge scaling at fronts generated by quantum quenches, which provide new universality classes awaiting theoretical explanation.
引用
收藏
页数:28
相关论文
共 82 条
[31]   Full Counting Statistics in a Propagating Quantum Front and Random Matrix Spectra [J].
Eisler, Viktor ;
Racz, Zoltan .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[32]  
Forrester P., 2010, LONDON MATH SOC MONO
[33]   Domain-wall dynamics in the Landau-Lifshitz magnet and the classical-quantum correspondence for spin transport [J].
Gamayun, Oleksandr ;
Miao, Yuan ;
Ilievski, Enej .
PHYSICAL REVIEW B, 2019, 99 (14)
[34]   Local correlations in a strongly interacting one-dimensional Bose gas [J].
Gangardt, DM ;
Shlyapnikov, GV .
NEW JOURNAL OF PHYSICS, 2003, 5 :79.1-79.11
[35]  
Gaudin M, 2014, The Bethe Wavefunction
[36]   Real-time dynamics in spin-1/2 on chains with adaptive time-dependent density matrix renormalization group -: art. no. 036102 [J].
Gobert, D ;
Kollath, C ;
Schollwöck, U ;
Schütz, G .
PHYSICAL REVIEW E, 2005, 71 (03)
[37]   THE NONLINEAR SCHRODINGER MODEL AS A SPECIAL CONTINUUM-LIMIT OF THE ANISOTROPIC HEISENBERG-MODEL [J].
GOLZER, B ;
HOLZ, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (11) :3327-3338
[38]  
Gomez C., 1996, CAMBRIDGE MONOGRAPHS, DOI [10.1017/CBO9780511628825, DOI 10.1017/CBO9780511628825]
[39]   Kinetic Theory of Spin Diffusion and Superdiffusion in XXZ Spin Chains [J].
Gopalakrishnan, Sarang ;
Vasseur, Romain .
PHYSICAL REVIEW LETTERS, 2019, 122 (12)
[40]  
Hauschild Johannes, 2018, SciPost Phys. Lect. Notes, V5, DOI DOI 10.21468/SCIPOSTPHYSLECTNOTES.5