Discrete maximum principle for FE solutions of the diffusion-reaction problem on prismatic meshes

被引:14
|
作者
Hannukainen, Antti [2 ]
Korotov, Sergey [2 ]
Vejchodsky, Tomas [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CZ-11567 Prague 1, Czech Republic
[2] Aalto Univ, Inst Math, FIN-02015 Espoo, Finland
基金
芬兰科学院;
关键词
Diffusion-reaction problem; Maximum principle; Prismatic finite elements; Discrete maximum principle; SCHEMES;
D O I
10.1016/j.cam.2008.08.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyse the discrete maximum principle (DMP) for a stationary diffusion-reaction problem solved by means of prismatic finite elements. We derive geometric conditions on the shape parameters of the prismatic partitions which guarantee validity of the DMP. The presented numerical tests show the sharpness of the obtained conditions. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:275 / 287
页数:13
相关论文
共 50 条
  • [1] Discrete Maximum Principles for FE Solutions of Nonstationary Diffusion-Reaction Problems with Mixed Boundary Conditions
    Farago, Istvan
    Horvath, Robert
    Korotov, Sergey
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) : 702 - 720
  • [2] APPROXIMATE SOLUTIONS FOR NONLINEAR DIFFUSION-REACTION EQUATIONS FROM THE MAXIMUM PRINCIPLE
    REGALBUTO, M
    STRIEDER, W
    VARMA, A
    CHEMICAL ENGINEERING SCIENCE, 1988, 43 (03) : 513 - 518
  • [3] Higher-order discrete maximum principle for 1D diffusion-reaction problems
    Vejchodsky, Tomas
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) : 486 - 500
  • [4] APPROXIMATE SOLUTIONS FOR NONLINEAR DIFFUSION-REACTION EQUATIONS USING THE MAXIMUM PRINCIPLE - A CASE INVOLVING MULTIPLE SOLUTIONS
    REGALBUTO, MC
    STRIEDER, W
    VARMA, A
    CHEMICAL ENGINEERING SCIENCE, 1989, 44 (09) : 2063 - 2074
  • [5] Discrete maximum principle for the finite element solution of linear non-stationary diffusion-reaction problems
    Elshebli, Maryem A. T.
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (08) : 1530 - 1541
  • [6] DISCRETE MAXIMUM PRINCIPLE FOR PRISMATIC FINITE ELEMENTS
    Vejchodsky, Tomas
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 266 - 275
  • [7] A Finite Volume Scheme with the Discrete Maximum Principle for Diffusion Equations on Polyhedral Meshes
    Chernyshenko, Alexey
    Vassilevski, Yuri
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 197 - 205
  • [8] The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem
    Brandts, Jan H.
    Korotov, Sergey
    Krizek, Michal
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) : 2344 - 2357
  • [9] MICROSCOPIC SELECTION PRINCIPLE FOR A DIFFUSION-REACTION EQUATION
    BRAMSON, M
    CALDERONI, P
    DEMASI, A
    FERRARI, P
    LEBOWITZ, J
    SCHONMANN, RH
    JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (5-6) : 905 - 920
  • [10] Discrete maximum principle for Galerkin finite element solutions to parabolic problems on rectangular meshes
    Faragó, I
    Horváth, R
    Korotov, S
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 298 - 307