First-Order Piezoresistive Coefficients of Lateral NMOS FETs on 4H Silicon Carbide

被引:5
|
作者
Jaeger, Richard C. [1 ]
Chen, Jun [2 ]
Suhling, Jeffrey C. [2 ]
Fursin, Leonid [3 ]
机构
[1] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[2] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[3] United Silicon Carbide Inc, Monmouth Jct, NJ 08852 USA
关键词
Silicon carbide; NMOSFET; piezoresistance; mechanical stress; stress sensor; stress sensor rosette; CMOS SENSOR ARRAYS; STRESS SENSORS; COMPONENTS;
D O I
10.1109/JSEN.2019.2905787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stress dependent properties and modeling of lateral enhancement-mode NMOS FETS on 4H silicon carbide are described in detail for a wide range of bias conditions. NFET stress response is shown to include a strong threshold voltage component in addition to the expected mobility component, and a theoretical model for the stress dependencies closely matches the measured data. Values of the longitudinal and transverse piezoresistive coefficients are extracted from linear region measurements of the MOS transistors as a function of gate drive for the both crystallographic and chip coordinate systems. At low gate drive, threshold variations become much more important than the classic mobility terms, whereas high gate drive is utilized to extract the mobility terms from the data. Design of a four-transistor temperature compensated stress sensor rosette that requires a value of only one combined piezoresistive coefficient is also presented.
引用
收藏
页码:6037 / 6045
页数:9
相关论文
共 50 条
  • [21] Electron paramagnetic resonance of the scandium acceptor in 4H and 6H silicon carbide
    Spaeth, JM
    Greulich-Weber, S
    März, M
    Mokhov, EN
    Kalabukhova, EN
    PHYSICA B-CONDENSED MATTER, 1999, 273-4 : 667 - 671
  • [22] First-order piezoresistance coefficients in heavily doped p-type silicon crystals
    Kozlovskiy, S. I.
    Nedostup, V. V.
    Boiko, I. I.
    SENSORS AND ACTUATORS A-PHYSICAL, 2007, 133 (01) : 72 - 81
  • [23] Studies of damage accumulation in 4H silicon carbide by ion-channeling techniques
    Zhang, Y
    Gao, F
    Jiang, W
    McCready, DE
    Weber, WJ
    PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-5, 2005, 475-479 : 1341 - 1344
  • [24] Investigation of Ni/Ta contacts on 4H silicon carbide upon thermal annealing
    Cao, Y.
    Perez-Garcia, S. A.
    Nyborg, L.
    APPLIED SURFACE SCIENCE, 2007, 254 (01) : 139 - 142
  • [25] Damage evolution and recovery in 4H and 6H silicon carbide irradiated with aluminum ions
    Weber, WJ
    Jiang, W
    Zhang, Y
    Hallén, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2002, 191 : 514 - 518
  • [26] Dopant activation and surface morphology of ion implanted 4H and 6H silicon carbide
    Capano, MA
    Ryu, S
    Melloch, MR
    Cooper, JA
    Buss, MR
    JOURNAL OF ELECTRONIC MATERIALS, 1998, 27 (04) : 370 - 376
  • [27] Infrared optical properties of 3C, 4H and 6H silicon carbide
    Lindquist, OPA
    Arwin, H
    Henry, A
    Järrendahl, K
    SILICON CARBIDE AND RELATED MATERIALS - 2002, 2002, 433-4 : 329 - 332
  • [28] Enhanced cavity coupling to silicon vacancies in 4H silicon carbide using laser irradiation and thermal annealing
    Gadalla, Mena N.
    Greenspon, Andrew S.
    Defo, Rodrick Kuate
    Zhang, Xingyu
    Hu, Evelyn L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (12)
  • [29] Stability and mobility of screw dislocations in 4H, 2H and 3C silicon carbide
    Pizzagalli, L.
    ACTA MATERIALIA, 2014, 78 : 236 - 244
  • [30] Electrically Active Defects in 3C, 4H, and 6H Silicon Carbide Polytypes: A Review
    Capan, Ivana
    CRYSTALS, 2025, 15 (03)