Hodge decomposition theorem on strongly Kahler Finsler manifolds

被引:22
作者
Zhong Chunping [1 ]
Zhong Tongde
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2006年 / 49卷 / 11期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
strongly Kahler Finsler; hodge decomposition theorem; partial derivative-Laplacian;
D O I
10.1007/s11425-006-2055-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Faran posed an open problem about analysis on complex Finsler spaces: Is there an analogue of the partial derivative-Laplacian? Is there an analogue of Hodge theory? Under the assumption that (M, F) is a compact strongly Kahler Finsler manifold, we define a partial derivative-Laplacian on the base manifold. Our result shows that the well-known Hodge decomposition theorem in Kahler manifolds is still true in the more general compact strongly Kahler Finsler manifolds.
引用
收藏
页码:1696 / 1714
页数:19
相关论文
共 24 条
[1]  
Abate M., 1994, Lecture Notes in Mathematics, V1591
[2]  
AIKOU T, 1991, REP FS KAGOSHIMA U, V35, P9
[3]  
Aikou T., 2004, Mathematical Sciences Research Institute Publications, V50, P83
[4]  
[Anonymous], 1978, Principles of algebraic geometry
[5]  
Antonelli PL, 1998, MATH APPL, V459, P141
[6]  
Bao D, 1998, MATH APPL, V459, P245
[7]  
Bao D, 1996, CR ACAD SCI I-MATH, V323, P51
[8]   Eigenvalues of second-order differential operators on a Finsler manifold [J].
Bertrand, C ;
Rauzy, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (05) :399-408
[9]  
Bland J., 1996, CONT MATH, V196, P121
[10]  
Centore P, 1998, MATH APPL, V459, P151