On the spectral problem associated with the Camassa-Holm equation

被引:15
作者
Bennewitz, C [1 ]
机构
[1] Lund Univ, Dept Math, SE-22100 Lund, Sweden
关键词
D O I
10.2991/jnmp.2004.11.4.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a basic uniqueness theorem in the inverse spectral theory for a Sturm-Liouville equation with a weight which is not of one sign. It is shown that the theorem may be applied to the spectral problem associated with the Camassa-Holm integrable system which models shallow water waves.
引用
收藏
页码:422 / 434
页数:13
相关论文
共 16 条
[1]   SPECTRAL ASYMPTOTICS FOR STURM-LIOUVILLE EQUATIONS [J].
BENNEWITZ, C .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 59 :294-338
[2]  
BENNEWITZ C, 2004, UNPUB TITCHMARSHWEYL
[3]  
BENNEWITZ C, 2003, CONT MATH, V327, P21
[4]  
BENNEWITZ C, 2004, UNPUB DIRECT INVERSE
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[7]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[8]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[9]  
2-D
[10]   On the geometric approach to the motion of inertial mechanical systems [J].
Constantin, A ;
Kolev, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (32) :R51-R79