Wiener Indices of Maximal k-Degenerate Graphs

被引:8
|
作者
Bickle, Allan [1 ]
Che, Zhongyuan [2 ]
机构
[1] Penn State Univ, Dept Math, Altoona Campus, Altoona, PA 16601 USA
[2] Penn State Univ, Dept Math, Beaver Campus, Monaca, PA 15061 USA
关键词
k-Tree; Maximal k-degenerate graph; Wiener index; DISTANCE;
D O I
10.1007/s00373-020-02264-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n >= k >= 1. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n >= k are k-trees. For k-trees of order n >= 2k + 2, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:9
相关论文
共 50 条
  • [21] On the maximal eccentric connectivity indices of graphs
    Jian-bin Zhang
    Zhong-zhu Liu
    Bo Zhou
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 374 - 378
  • [22] On the maximal eccentric connectivity indices of graphs
    ZHANG Jian-bin
    LIU Zhong-zhu
    ZHOU Bo
    Applied Mathematics:A Journal of Chinese Universities, 2014, (03) : 374 - 378
  • [23] On the maximal eccentric connectivity indices of graphs
    Zhang Jian-bin
    Liu Zhong-zhu
    Zhou Bo
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (03) : 374 - 378
  • [24] Computing Wiener and hyper-Wiener indices of unitary Cayley graphs
    Loghman, Amir
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 3 (02): : 121 - 125
  • [25] Graphs with the second and third maximum Wiener indices over the 2-vertex connected graphs
    Bessy, Stephane
    Dross, Francois
    Knor, Martin
    Skrekovski, Riste
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 195 - 200
  • [26] The nine smallest hyper-Wiener indices of trees and the eight smallest hyper-Wiener (Wiener) indices of unicyclic graphs
    Liu, Muhuo
    Liu, Bolian
    UTILITAS MATHEMATICA, 2014, 95 : 129 - 139
  • [27] ON THE VERTEX-EDGE WIENER INDICES OF THORN GRAPHS
    Azari, Mahdieh
    MATEMATICKI VESNIK, 2019, 71 (03): : 263 - 276
  • [28] WIENER AND VERTEX PI INDICES OF THE STRONG PRODUCT OF GRAPHS
    Pattabiraman, K.
    Paulraja, P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 749 - 769
  • [29] Wiener and vertex PI indices of Kronecker products of graphs
    Hoji, Marhaba
    Luo, Zhaoyang
    Vumar, Elkin
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (16) : 1848 - 1855
  • [30] ON A RELATION BETWEEN SZEGED AND WIENER INDICES OF BIPARTITE GRAPHS
    Chen, L.
    Li, X.
    Liu, M.
    Gutman, I.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (04) : 43 - 49