Deep Global Registration

被引:392
作者
Choy, Christopher [1 ]
Dong, Wei [2 ]
Koltun, Vladlen [3 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Intel Labs, Hillsboro, OR USA
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
关键词
TRACKING;
D O I
10.1109/CVPR42600.2020.00259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present Deep Global Registration, a differentiable framework for pairwise registration of real-world 3D scans. Deep global registration is based on three modules: a 6-dimensional convolutional network for correspondence confidence prediction, a differentiable Weighted Procrustes algorithm for closed-form pose estimation, and a robust gradient-based SE(3) optimizer for pose refinement. Experiments demonstrate that our approach outperforms state-of-the-art methods, both learning-based and classical, on real-world data.
引用
收藏
页码:2511 / 2520
页数:10
相关论文
共 51 条
[1]   4-points congruent sets for robust pairwise surface registration [J].
Aiger, Dror ;
Mitra, Niloy J. ;
Cohen-Or, Daniel .
ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03)
[2]  
[Anonymous], 2011, ICRA
[3]  
[Anonymous], 1999, PATTERN ANAL MACHINE
[4]  
[Anonymous], 2010, ACM WORKSH 3D OBJ RE
[5]   PointNetLK: Robust & Efficient Point Cloud Registration using PointNet [J].
Aoki, Yasuhiro ;
Goforth, Hunter ;
Srivatsan, Rangaprasad Arun ;
Lucey, Simon .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7156-7165
[6]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[7]   Sparse Iterative Closest Point [J].
Bouaziz, Sofien ;
Tagliasacchi, Andrea ;
Pauly, Mark .
COMPUTER GRAPHICS FORUM, 2013, 32 (05) :113-123
[8]  
Cai Q, 2010, LECT NOTES COMPUT SC, V6313, P229
[9]  
Choi S, 2015, PROC CVPR IEEE, P5556, DOI 10.1109/CVPR.2015.7299195
[10]   Fully Convolutional Geometric Features [J].
Choy, Christopher ;
Park, Jaesik ;
Koltun, Vladlen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8957-8965