Deep Global Registration

被引:347
作者
Choy, Christopher [1 ]
Dong, Wei [2 ]
Koltun, Vladlen [3 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Intel Labs, Hillsboro, OR USA
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
关键词
TRACKING;
D O I
10.1109/CVPR42600.2020.00259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present Deep Global Registration, a differentiable framework for pairwise registration of real-world 3D scans. Deep global registration is based on three modules: a 6-dimensional convolutional network for correspondence confidence prediction, a differentiable Weighted Procrustes algorithm for closed-form pose estimation, and a robust gradient-based SE(3) optimizer for pose refinement. Experiments demonstrate that our approach outperforms state-of-the-art methods, both learning-based and classical, on real-world data.
引用
收藏
页码:2511 / 2520
页数:10
相关论文
共 51 条
  • [1] 4-points congruent sets for robust pairwise surface registration
    Aiger, Dror
    Mitra, Niloy J.
    Cohen-Or, Daniel
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [2] [Anonymous], 2011, ICRA
  • [3] [Anonymous], 1999, PATTERN ANAL MACHINE
  • [4] [Anonymous], 2017, ICCV
  • [5] [Anonymous], 2010, ACM WORKSH 3D OBJ RE
  • [6] PointNetLK: Robust & Efficient Point Cloud Registration using PointNet
    Aoki, Yasuhiro
    Goforth, Hunter
    Srivatsan, Rangaprasad Arun
    Lucey, Simon
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7156 - 7165
  • [7] A METHOD FOR REGISTRATION OF 3-D SHAPES
    BESL, PJ
    MCKAY, ND
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) : 239 - 256
  • [8] Sparse Iterative Closest Point
    Bouaziz, Sofien
    Tagliasacchi, Andrea
    Pauly, Mark
    [J]. COMPUTER GRAPHICS FORUM, 2013, 32 (05) : 113 - 123
  • [9] Cai Q, 2010, LECT NOTES COMPUT SC, V6313, P229
  • [10] Choi S, 2015, PROC CVPR IEEE, P5556, DOI 10.1109/CVPR.2015.7299195