Thermal relaxation of dark matter admixed neutron star

被引:18
作者
Kumar, Ankit [1 ,2 ]
Das, H. C. [1 ,2 ]
Patra, S. K. [1 ,2 ]
机构
[1] Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, India
[2] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, India
关键词
equation of state; stars: neutron; dark matter; X-RAY-EMISSION; HEAT BLANKETING ENVELOPES; EQUATION-OF-STATE; NUCLEAR-MATTER; DENSE MATTER; TRANSPORT-PROPERTIES; PAIR BREMSSTRAHLUNG; FIELD-THEORY; URCA PROCESS; EVOLUTION;
D O I
10.1093/mnras/stac1013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Motivated by the various theoretical studies regarding the efficient capturing of dark matter by neutron stars, we explore the possible indirect effects of captured dark matter on the cooling mechanism of a neutron star. The equation of states for different configurations of dark matter admixed star at finite temperature is obtained using the relativistic mean-field formalism with the IOPB-I parameter set. We show that the variation in the dark matter momentum vastly modifies the neutrino emissivity through specific neutrino generating processes of the star. The specific heat and the thermal conductivity of a dark matter admixed star have also been investigated to explore the propagation of cooling waves in the interior of the star. The dependence of theoretical surface temperature cooling curves on the equation of state and chemical composition of the stellar matter has also been discussed along with the observational data of thermal radiation from various sources. We observed that the dark matter admixed canonical stars with k(f)(DM) > 0.04 comply with the fast cooling scenario. Further, the metric for internal thermal relaxation epoch has also been calculated with different dark matter momentum and we deduced that increment of dark matter segment amplify the cooling and internal relaxation rates of the star.
引用
收藏
页码:1820 / 1833
页数:14
相关论文
共 142 条
[1]   GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (14)
[2]   GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aich, A. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Ansoldi, S. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arne, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asali, Y. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. .
ASTROPHYSICAL JOURNAL LETTERS, 2020, 896 (02)
[3]   Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data [J].
Alvarez-Ruso, L. ;
Ledwig, T. ;
Camalich, J. Martin ;
Vicente-Vacas, M. J. .
PHYSICAL REVIEW D, 2013, 88 (05)
[4]   Natural SUSY with a bino- or wino-like LSP [J].
Baer, Howard ;
Barger, Vernon ;
Huang, Peisi ;
Mickelson, Dan ;
Padeffke-Kirkland, Maren ;
Tata, Xerxes .
PHYSICAL REVIEW D, 2015, 91 (07)
[5]   Thermal conductivity of neutrons in neutron star cores [J].
Baiko, DA ;
Haensel, P ;
Yakovlev, DG .
ASTRONOMY & ASTROPHYSICS, 2001, 374 (01) :151-163
[6]   Thermodynamic functions of harmonic Coulomb crystals [J].
Baiko, DA ;
Potekhin, AY ;
Yakovlev, DG .
PHYSICAL REVIEW E, 2001, 64 (05) :4-057402
[7]   Particle dark matter: evidence, candidates and constraints [J].
Bertone, G ;
Hooper, D ;
Silk, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 405 (5-6) :279-390
[8]   Heat blanketing envelopes of neutron stars [J].
Beznogov, M. V. ;
Potekhin, A. Y. ;
Yakovlev, D. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 919 :1-68
[9]   Diffusive heat blanketing envelopes of neutron stars [J].
Beznogov, M. V. ;
Potekhin, A. Y. ;
Yakovlev, D. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (02) :1569-1579
[10]   GLASHOW-WEINBERG-SALAM THEORY OF ELECTROWEAK INTERACTIONS AND THE NEUTRAL CURRENTS [J].
BILENKY, SM ;
HOSEK, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 90 (02) :73-&