Region of variability for close-to-convex functions-II

被引:2
作者
Ponnusamy, S. [1 ]
Vasudevarao, A. [1 ]
Yanagihara, H. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Yamaguchi Univ, Fac Engn, Dept Appl Sci, Yamaguchi, Japan
关键词
Schwarz lemma; Analytic; Univalent; Starlike and convex functions; Variability region;
D O I
10.1016/j.amc.2009.06.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a complex number alpha with Re alpha > 0 let K-phi (alpha) be the class of analytic functions f in the unit disk D with f (0) = 0 satisfying Re (f'(z)/phi'(z)) > 0 in D; f'(0)/phi'(0) = alpha, for some convex univalent function phi in D. For any fixed z(0) is an element of D, and lambda is an element of (D) over bar we shall determine the region of variability V-phi (z(0), alpha, lambda) for f (z(0)) when f ranges over the class K-phi(alpha,lambda) = {f is an element of K-phi(alpha): d/dz (f'(z)/phi'(z))|(z=0) = 2 lambda(Re alpha)}. In the final section we graphically illustrate the region of variability for several sets of parameters z(0) and alpha. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:901 / 915
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[2]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[3]  
Goodman A. W., 1983, UNIVALENT FUNCTIONS, VII
[4]  
Goodman A. W., 1983, Univalent Functions
[5]   APPLICATIONS OF EXTREME POINT THEORY TO CLASSES OF MULTIVALENT FUNCTIONS [J].
HALLENBECK, DJ ;
LIVINGSTON, AE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 221 (02) :339-359
[6]  
Paatero V., 1931, Ann. Acad. Sci. Eenn. Ser. A, V33, P1
[8]   Region of variability for close-to-convex functions [J].
Ponnusamy, S. ;
Vasudevarao, A. ;
Yanagihara, H. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (08) :709-716
[9]  
Ponnusamy S., 2005, Foundation of Complex Analysis
[10]  
Ponnusamy Saminathan., 2006, COMPLEX VARIABLES AP