Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate

被引:55
作者
Hamouda, Mostafa E. [1 ,2 ,3 ]
Pasquero, Claudia [1 ,4 ]
Tziperman, Eli [5 ,6 ]
机构
[1] Univ Milano Bicocca, Dept Earth & Environm Sci, Milan, Italy
[2] Cairo Univ, Fac Sci, Astron & Meteorol Dept, Cairo, Egypt
[3] Osserv Geofis Sperimentale Trieste, Trieste, Italy
[4] CNR, Ist Sci Atmosfera & Clima, Turin, Italy
[5] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA
[6] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
SEA-ICE DECLINE; EXTRATROPICAL CIRCULATION; ATMOSPHERIC CIRCULATION; ANNULAR MODES; VARIABILITY; STRATOSPHERE; COVER; LINKS;
D O I
10.1038/s41558-020-00966-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The North Atlantic Oscillation and the Arctic Oscillation are modes of climate variability affecting temperature and precipitation in the mid-latitudes. Here we use reanalysis data and climate model simulations of historical and warm climates to show that the relationship between the two oscillations changes with climate warming. The two modes are currently highly correlated, as both are strongly influenced by the downward propagation of stratospheric polar vortex anomalies into the troposphere. When considering a very warm climate scenario, the hemispherically defined Arctic Oscillation pattern shifts to reflect variability of the North Pacific storm track, while the regionally defined North Atlantic Oscillation pattern remains stable. The stratosphere remains an important precursor for North Atlantic Oscillation, and surface Eurasian and Aleutian pressure anomalies precede stratospheric anomalies. Idealized general circulation model simulations suggest that these modifications are linked to the stronger warming of the Pacific compared with the slower warming of the Atlantic Ocean.
引用
收藏
页码:137 / 142
页数:17
相关论文
共 62 条
[41]   The stratospheric pathway for Arctic impacts on midlatitude climate [J].
Nakamura, Tetsu ;
Yamazaki, Koji ;
Iwamoto, Katsushi ;
Honda, Meiji ;
Miyoshi, Yasunobu ;
Ogawa, Yasunobu ;
Tomikawa, Yoshihiro ;
Ukita, Jinro .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (07) :3494-3501
[42]  
NORTH GR, 1982, MON WEATHER REV, V110, P699, DOI 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO
[43]  
2
[44]   Response of the Wintertime Northern Hemisphere Atmospheric Circulation to Current and Projected Arctic Sea Ice Decline: A Numerical Study with CAM5 [J].
Peings, Yannick ;
Magnusdottir, Gudrun .
JOURNAL OF CLIMATE, 2014, 27 (01) :244-264
[45]  
Polvani LM, 2000, J ATMOS SCI, V57, P3663, DOI 10.1175/1520-0469(2000)057<3663:TTDSOB>2.0.CO
[46]  
2
[47]   Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? [J].
Raddatz, T. J. ;
Reick, C. H. ;
Knorr, W. ;
Kattge, J. ;
Roeckner, E. ;
Schnur, R. ;
Schnitzler, K.-G. ;
Wetzel, P. ;
Jungclaus, J. .
CLIMATE DYNAMICS, 2007, 29 (06) :565-574
[48]  
Rahmstorf S, 2015, NAT CLIM CHANGE, V5, P475, DOI [10.1038/NCLIMATE2554, 10.1038/nclimate2554]
[49]   Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5 [J].
Richter, Jadwiga H. ;
Solomon, Abraham ;
Bacmeister, Julio T. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2014, 6 (02) :357-383
[50]   The transient atmospheric response to a reduction of sea-ice cover in the Barents and Kara Seas [J].
Ruggieri, P. ;
Kucharski, F. ;
Buizza, R. ;
Ambaum, M. H. P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (704) :1632-1640