Convolutional neural network based rolling-element bearing fault diagnosis for naturally occurring and progressing defects using time-frequency domain features

被引:62
|
作者
Pandhare, Vibhor [1 ]
Singh, Jaskaran [1 ]
Lee, Jay [1 ]
机构
[1] Univ Cincinnati, Ctr Intelligent Maintenance Syst, Cincinnati, OH 45221 USA
关键词
Convolutional Neural Network; Rolling-element Bearing; Fault Diagnosis; Deep Learning; ROTATING MACHINERY;
D O I
10.1109/PHM-Paris.2019.00061
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Convolutional Neural Networks (CNN) are becoming increasingly popular for bearing fault diagnosis due to their ability to automatically capture the sensitive fault information without the need for expert knowledge. Most of these applications are developed considering vibration data from artificially induced faults. However, bearing failure in real-life can show huge damage variations even within a single category of failure which artificially induced failures are unable to represent. Thus, in this paper, the performance of classical CNN is evaluated on bearings with naturally occurring and progressing defects from the Paderborn University Dataset. A three-class (Healthy, Inner Race Fault & Outer Race Fault) classification problem is solved considering five bearing conditions within each class. These conditions vary in terms of bearing operating hours, damage mode, damage repetition pattern, the extent of damage, etc. The classification accuracy is evaluated under two cases: 1) at least a portion of data from each bearing condition from all classes is used in training; 2) data from all available conditions are considered for training except from one condition which is used explicitly for testing. Within each case, the effect of changing the domain of the input data is evaluated on the achieved accuracy. Three input signals based on vibration data (raw time domain signal, envelope spectrum, and spectrogram) were explored for their representation effectiveness. The proposed CNN with a spectrogram of the vibration signal as input achieves better results than similar architectures. Finally, the potential challenges that come along with the implementation of Deep Learning technologies for industrial applications are discussed and future research directions are proposed.
引用
收藏
页码:320 / 326
页数:7
相关论文
共 50 条
  • [41] Fault diagnosis of rolling element bearing based on a new noise-resistant time-frequency analysis method
    Wang, Hongchao
    Hao, Fang
    JOURNAL OF VIBROENGINEERING, 2018, 20 (08) : 2825 - 2838
  • [42] Rotor Fault Diagnosis Using Domain-Adversarial Neural Network with Time-Frequency Analysis
    Xu, Yongjie
    Liu, Jingze
    Wan, Zhou
    Zhang, Dahai
    Jiang, Dong
    MACHINES, 2022, 10 (08)
  • [43] Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional Neural Network
    Hou, Liqun
    Li, Zijing
    Qu, Huaisheng
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (11) : 32 - 44
  • [44] Rolling bearing fault diagnosis using enhanced convolutional neural network with compressed sensing
    Liang, Tianchen
    Wang, Jiayao
    Wang, Haoyu
    Wu, Shuaipeng
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 148 - 152
  • [45] A wind turbine bearing fault diagnosis method based on fused depth features in time-frequency domain
    Tang, Zhenhao
    Wang, Mengjiao
    Ouyang, Tinghui
    Che, Fei
    ENERGY REPORTS, 2022, 8 : 12727 - 12739
  • [46] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Liang, Mingxuan
    Cao, Pei
    Tang, J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (3-4): : 819 - 831
  • [47] Rolling Bearing Fault Diagnosis Based on Wavelet Packet Transform and Convolutional Neural Network
    Li, Guoqiang
    Deng, Chao
    Wu, Jun
    Chen, Zuoyi
    Xu, Xuebing
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [48] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [49] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [50] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406