The Chow group of oriented cycles and the Euler class of vector bundles

被引:36
作者
Barge, J [1 ]
Morel, F
机构
[1] Ecole Polytech, Ctr Math, F-91128 Palaiseau, France
[2] Univ Paris 07, Inst Math, F-75251 Paris 05, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 04期
关键词
D O I
10.1016/S0764-4442(00)00158-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field of characteristic not 2 and X be a smooth k-variety of dimension n. To any oriented n-dimensional vector bundle xi, we functorially assign an Euler class e(xi) is an element of H-Zar(n) (X; (J) under bar(n)), where (J) under bar(n) is a certain sheaf. When k is algebraically closed, this cohomology group reduces to the Chow group CHn(X) of 0-cycles and the Euler class to the Chern class c(n) (xi). In this Note we study the following problem: for X affine, is the vanishing of the Euler class the only obstruction for xi to have a free direct summand of rank one. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:287 / 290
页数:4
相关论文
共 10 条
[1]   COHOMOLOGICAL INVARIANTS OF QUADRATIC-FORMS [J].
ARASON, JK .
JOURNAL OF ALGEBRA, 1975, 36 (03) :448-491
[2]   ALGEBRAIC VECTOR-BUNDLES OVER A REAL SURFACE [J].
BARGE, J ;
OJANGUREN, M .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (04) :616-629
[3]   Cohomology of linear groups, Milnor's K-theory and Witt's groups [J].
Barge, J ;
Morel, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (03) :191-196
[4]  
BASS H, ALGEBRAIC K THEORY
[5]   Projective generation of curves in polynomial extensions of an affine domain and a question of Nori [J].
Bhatwadekar, SM ;
Sridharan, R .
INVENTIONES MATHEMATICAE, 1998, 133 (01) :161-192
[6]  
Kato K., 1986, CONT MATH, V55, P241
[7]   ALGEBRAIC K-THEORY AND QUADRATIC FORMS [J].
MILNOR, J .
INVENTIONES MATHEMATICAE, 1970, 9 (04) :318-&
[8]   ZERO CYCLES AND PROJECTIVE-MODULES [J].
MURTHY, MP .
ANNALS OF MATHEMATICS, 1994, 140 (02) :405-434
[9]  
Rost M., 1996, DOC MATH, V1, P319
[10]  
SCHMID M, 1998, THESIS FAKULTAT MATH