Rational points on Fermat curves over finite fields

被引:1
作者
Cao, Wei [1 ]
Han, Shanmeng [1 ]
Wang, Ruyun [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite field; fermat curve; rational point; Gauss sum;
D O I
10.1142/S0219498817500463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let ( u, v, w) be the F-qi-rational point on the Fermat curve u(q-1) vertical bar v(q-1) vertical bar w(q-1) = 0 with 3|(q(i) -1). It has recently been proved that if i is an element of{1, 2, 3} then each uvw is a cube in F qi. It is natural to wonder whether there is a generalization to i >= 4. In this paper, we show that the result cannot be extended to i >= 4 in general and conjecture that each uvw is a cube in F-q(i) if and only if i is an element of{1, 2, 3}.
引用
收藏
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1982, CLASSICAL INTRO MODE
[2]   On a class of equations with special degrees over finite fields [J].
Cao, Wei ;
Sun, Qi .
ACTA ARITHMETICA, 2007, 130 (02) :195-202
[3]   DEGREE MATRICES AND ESTIMATES FOR EXPONENTIAL SUMS OF POLYNOMIALS OVER FINITE FIELDS [J].
Cao, Wei .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)
[4]   Some Planar Monomials in Characteristic 2 [J].
Scherr, Zachary ;
Zieve, Michael E. .
ANNALS OF COMBINATORICS, 2014, 18 (04) :723-729
[5]   Planar functions over fields of characteristic two [J].
Schmidt, Kai-Uwe ;
Zhou, Yue .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (02) :503-526
[6]   RATIONAL POINTS ON SOME FERMAT CURVES AND SURFACES OVER FINITE FIELDS [J].
Voloch, Jose Felipe ;
Zieve, Michael E. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (02) :319-325
[7]  
Wan D, 2006, AMSIP STUD ADV MATH, V38, P159
[8]   Modular counting of rational points over finite fields [J].
Wan, Daqing .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (05) :597-605
[9]  
Xu L., 2015, J NINGBO U NSEE, V28, P48