Parametric study of fluid-solid interaction for single-particle dissipative particle dynamics model

被引:7
|
作者
Wang, Yi [1 ]
Ouyang, Jie [1 ]
Li, Yanggui [2 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Sci, Minist Educ, Key Lab Space Appl Phys & Chem, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluid-solid interaction; Dissipative particle dynamics; Mesoscale; Drag force; Effective radius; SIMULATION; DPD; MOTION; FLOWS;
D O I
10.1007/s10404-018-2099-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, a parametric study of fluid-solid interaction for single-particle dissipative particle dynamics (DPD) model is conducted to describe the hydrodynamic interactions in a large range of particle sizes. To successfully reproduce the hydrodynamics for different particle sizes, and overcome the problem that effective radius of solid sphere does not match its real radius, the cut-off radius and conservative force coefficient of single-particle DPD model have been modified. The cut-off radius and conservative force coefficient are related to the drag force and radial distribution function, so that, for each particle size, they can be determined by DPD simulations. Through numerical fitting, two empirical formulas as a function of spherical radius are developed to calculate the cut-off radius and conservative force coefficient. Numerical results indicate that the single-particle DPD model is, indeed, capable of capturing low Reynolds number hydrodynamic interactions for different particle sizes by selecting these model parameters reasonably. Specifically, the model can not only insure that drag force and torque are quantitatively consistent with theoretical results, but also guarantee the effective radius matches well its real radius. In addition, the shear dissipative force is the major part of drag force and should not be ignored. This study will help to improve the application range of single-particle DPD model to make it suitable for different particle sizes and provide parameter guidance for studying fluid-solid interaction using single-particle DPD model.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model
    Yi Wang
    Jie Ouyang
    Yanggui Li
    Microfluidics and Nanofluidics, 2018, 22
  • [2] Anisotropic single-particle dissipative particle dynamics model
    Deng, Mingge
    Pan, Wenxiao
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 481 - 491
  • [3] A dissipative particle dynamics algorithm for fluid-solid conjugate heat transfer
    Zhang, Yi-Xin
    Yi, Hong-Liang
    Tan, He-Ping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 555 - 563
  • [4] A dissipative particle dynamics study:influence of fluid-solid interaction force on micro-flow in shale slits
    Wu J.
    Fu W.
    Yan Q.
    Chen Y.
    Hu Y.
    Wang Z.
    Chang G.
    Zhang H.
    Wang D.
    Arabian Journal of Geosciences, 2021, 14 (6)
  • [5] Strongly overdamped Dissipative Particle Dynamics for fluid-solid systems
    Phan-Thien, N.
    Mai-Duy, N.
    Khoo, B. C.
    Duong-Hong, D.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (13-14) : 6359 - 6375
  • [6] Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model
    Dzwinel, W
    Yuen, DA
    Boryczko, K
    JOURNAL OF MOLECULAR MODELING, 2002, 8 (01) : 33 - 43
  • [7] Dissipative Particle Dynamics and other particle methods for multiphase fluid flow in fractured and porous media
    Meakin, Paul
    Xu, Zhijie
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2009, 9 (6-7): : 399 - 408
  • [8] Particle-based realistic simulation of fluid-solid interaction
    Sun, Hongquan
    Han, Jiqing
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2010, 21 (06) : 589 - 595
  • [9] Single-particle dynamics of microbunching
    Deng, X. J.
    Chao, A. W.
    Feikes, J.
    Huang, W. H.
    Ries, M.
    Tang, C. X.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (04):
  • [10] Mesoscale study of particle sedimentation with inertia effect using dissipative particle dynamics
    Liu, Hantao
    Jiang, Shan
    Chen, Zhen
    Liu, Moubin
    Chang, Jianzhong
    Wang, Yanhua
    Tong, Zhihui
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 18 (5-6) : 1309 - 1315