Uncertainty principle for angular position and angular momentum

被引:217
作者
Franke-Arnold, S [1 ]
Barnett, SM
Yao, E
Leach, J
Courtial, J
Padgett, M
机构
[1] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[2] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/1367-2630/6/1/103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory ( New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 18 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]  
Allen L, 2003, OPTICAL ANGULAR MOME
[3]   INTELLIGENT SPIN STATES [J].
ARAGONE, C ;
GUERRI, G ;
SALAMO, S ;
TANI, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (15) :L149-L151
[4]   EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS [J].
ASPECT, A ;
DALIBARD, J ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (25) :1804-1807
[5]   ON THE HERMITIAN OPTICAL-PHASE OPERATOR [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF MODERN OPTICS, 1989, 36 (01) :7-19
[6]   QUANTUM-THEORY OF ROTATION ANGLES [J].
BARNETT, SM ;
PEGG, DT .
PHYSICAL REVIEW A, 1990, 41 (07) :3427-3435
[7]  
BAZHENOV VY, 1990, JETP LETT+, V52, P429
[8]   EXPERIMENTAL-DETERMINATION OF NUMBER-PHASE UNCERTAINTY RELATIONS [J].
BECK, M ;
SMITHEY, DT ;
COOPER, J ;
RAYMER, MG .
OPTICS LETTERS, 1993, 18 (15) :1259-1261
[9]  
Heisenberg W., 1949, The Physical Principles of the Quantum Theory