Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics

被引:62
|
作者
Petrone, Nicholas [1 ]
Meric, Inanc [1 ,2 ]
Chari, Tarun [3 ]
Shepard, Kenneth L. [3 ]
Hone, James [1 ]
机构
[1] Columbia Univ, Dept Mech Engn, New York, NY 10023 USA
[2] Intel Corp, Hillsboro, OR 97124 USA
[3] Columbia Univ, Dept Elect Engn, New York, NY 10023 USA
来源
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY | 2015年 / 3卷 / 01期
关键词
Chemical vapor deposition (CVD); FET; flexible electronics; grapheme; radio-frequency (RF); SILICON NANOMEMBRANES; PERFORMANCE;
D O I
10.1109/JEDS.2014.2363789
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Flexible radio-frequency (RF) electronics require materials which possess both exceptional electronic properties and high-strain limits. While flexible graphene field-effect transistors (GFETs) have demonstrated significantly higher strain limits than FETs fabricated from thin films of Si and III-V semiconductors, to date RF performance has been comparatively worse, limited to the low GHz frequency range. However, flexible GFETs have only been fabricated with modestly scaled channel lengths. In this paper, we fabricate GFETs on flexible substrates with short channel lengths of 260 nm. These devices demonstrate extrinsic unity-power-gain frequencies, f(max), up to 7.6 GHz and strain limits of 2%, representing strain limits an order of magnitude higher than the flexible technology with next highest reported fmax.
引用
收藏
页码:44 / 48
页数:5
相关论文
共 50 条
  • [1] High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits
    Liang, Yiran
    Liang, Xuelei
    Zhang, Zhiyong
    Li, Wei
    Huo, Xiaoye
    Peng, Lianmao
    NANOSCALE, 2015, 7 (25) : 10954 - 10962
  • [2] Stability of radio-frequency graphene field-effect transistors in ambient
    Wang, Zidong
    Zhang, Qingping
    Wei, Zijun
    Peng, Pei
    Tian, Zhongzheng
    Ren, Liming
    Zhang, Xing
    Huang, Ru
    Wen, Jincai
    Fu, Yunyi
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (05)
  • [3] Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors
    Ma Peng
    Jin Zhi
    Guo Jian-Nan
    Pan Hong-Liang
    Liu Xin-Yu
    Ye Tian-Chun
    Wang Hong
    Wang Guan-Zhong
    CHINESE PHYSICS LETTERS, 2012, 29 (05)
  • [4] Flexible Graphene Field-Effect Transistors for Microwave Electronics
    Meric, Inanc
    Petrone, Nicholas
    Hone, James
    Shepard, Kenneth L.
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,
  • [5] Radio-Frequency Flexible Electronics: Transistors and Passives
    Seo, Jung-Hun
    Ma, Zhenqiang
    Zhou, Weidong
    2014 IEEE BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING (BCTM), 2014, : 107 - 114
  • [6] Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates
    Liu Qing-Bin
    Yu Cui
    Li Jia
    Song Xu-Bo
    He Ze-Zhao
    Lu Wei-Li
    Gu Guo-Dong
    Wang Yuan-Gang
    Feng Zhi-Hong
    CHINESE PHYSICS LETTERS, 2014, 31 (07)
  • [7] Graphene field-effect transistor for radio-frequency applications : review
    Moon, Jeong-Sun
    CARBON LETTERS, 2012, 13 (01) : 17 - 22
  • [8] Complementary field-effect transistors for flexible electronics
    Hilleringmann, Ulrich
    Vidor, Fabio F.
    Meyers, Thorsten
    FOURTH CONFERENCE ON SENSORS, MEMS, AND ELECTRO-OPTIC SYSTEMS, 2017, 10036
  • [9] Vertically Architectured Stack of Multiple Graphene Field-Effect Transistors for Flexible Electronics
    Meng, Jie
    Chen, Jing-Jing
    Zhang, Liang
    Bie, Ya-Qing
    Liao, Zhi-Min
    Yu, Da-Peng
    SMALL, 2015, 11 (14) : 1660 - 1664
  • [10] Radio-Frequency Polymer Field-Effect Transistors Characterized by S-Parameters
    Giorgio, M.
    Caironi, M.
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (06) : 953 - 956