Power law filters: A new class of fractional-order filters without a fractional-order Laplacian operator

被引:47
作者
Kapoulea, Stavroula [1 ]
Psychalinos, Costas [1 ]
Elwakil, Ahmed S. [2 ,3 ,4 ]
机构
[1] Univ Patras, Dept Phys, Elect Lab, GR-26504 Patras, Greece
[2] Univ Sharjah, Dept Elect & Comp Engn, POB 27272, Sharjah, U Arab Emirates
[3] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
[4] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB, Canada
关键词
Analog signal processing; Continuous-time signal processing; Analog filters; Fractional-order filters; Curve fitting approximations; DIFFERENTIATORS; IMPLEMENTATION; APPROXIMATION; REALIZATION; INTEGRATORS; DESIGN;
D O I
10.1016/j.aeue.2020.153537
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new category of fractional-order fillers, realized without employing a fractional-order Laplacian operator is introduced in this work. This can be achieved through the utilization of an efficient curve fitting method which approximates the frequency-domain behavior of the filter and transposes the fractional-order transfer function into the integer-order domain. Thus, the procedure results in a rational integer-order transfer function and its implementation is possible using conventional integer-order realization techniques. Therefore, there is no need for fractional-order elements to realize this class of fillers. Design examples of this new kind of filters are presented with the derived simulation and experimental results confirming their correct performance.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Approximation of the Fractional-Order Laplacian sα As a Weighted Sum of First-Order High-Pass Filters [J].
AbdelAty, A. M. ;
Elwakil, A. S. ;
Radwan, A. G. ;
Psychalinos, C. ;
Maundy, B. J. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (08) :1114-1118
[2]   Optimal Design for Realizing a Grounded Fractional Order Inductor Using GIC [J].
Adhikary, Avishek ;
Choudhary, Sourabh ;
Sen, Siddhartha .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (08) :2411-2421
[3]   Implementation and analysis of tunable fractional-order band-pass filter of order 2α [J].
Ahmed, Ola, I ;
Yassin, Heba M. ;
Said, Lobna A. ;
Psychalinos, Costas ;
Radwan, Ahmed G. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 124
[4]   Fractional Order Butterworth Filter: Active and Passive Realizations [J].
Ali, A. Soltan ;
Radwan, A. G. ;
Soliman, Ahmed M. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (03) :346-354
[5]  
Analog Devices, 2020, OP27 LOW NOIS PREC O
[6]  
[Anonymous], 2019, FRACTIONAL ORDER SYS
[7]  
Azar A.T., 2018, Fractional Order Systems Optimization, Control, Circuit Realizations and Applications
[8]   Analog realization of fractional filters: Laguerre approximation approach [J].
Baranowski, Jerzy ;
Pauluk, Mariusz ;
Tutaj, Andrzej .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 81 :1-11
[9]   Fractional Band-Pass Filters: Design, Implementation and Application to EEG Signal Processing [J].
Baranowski, Jerzy ;
Piatek, Pawel .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2017, 26 (11)
[10]  
Bauer Waldemar, 2020, Advanced, Contemporary Control. Proceedings of KKA 2020 - 20th Polish Control Conference, Lodz, Poland, 2020. Advances in Intelligent Systems and Computing (AISC 1196), P1189, DOI 10.1007/978-3-030-50936-1_99