WHEEZING SOUNDS DETECTION USING MULTIVARIATE GENERALIZED GAUSSIAN DISTRIBUTIONS

被引:17
作者
Le Cam, S. [1 ]
Belghith, A. [1 ]
Collet, Ch. [1 ]
Salzenstein, F. [2 ]
机构
[1] Univ Strasbourg, ULP, CNRS, LSIIT,UMR 7005, F-67070 Strasbourg, France
[2] Univ Strasbourg, ULP, CNRS, Lab INESS ,UMR 7163, F-67070 Strasbourg, France
来源
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS | 2009年
关键词
Adventitious Respiratory Sounds; Data Fusion; Hidden Markov Chain; Generalized Gaussian Distribution; Copulas Theory; HIDDEN MARKOV-MODELS; SIGNAL;
D O I
10.1109/ICASSP.2009.4959640
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A wheeze is a continuous, coarse, whistling sound produced in the respiratory airways during breathing, commonly experienced by persons suffering from asthma. In this paper, we present a new method for the detection of wheezing sounds in the normal breathing sounds. In our study we perform an accurate statistical analysis of breathing signals. We suggest a modeling for wheezing and normal sounds in the wavelet packet domain using generalized gaussian distributions. Our detection method is based on a specific multimodal Markovian modeling proposed in a bayesian framework. We cope with the multidimensional aspect of the generalized gaussian distribution by using the theory of copulas. Experimental results are given in detail in this paper.
引用
收藏
页码:541 / +
页数:2
相关论文
共 47 条
[1]   Geodesics on the Manifold of Multivariate Generalized Gaussian Distributions with an Application to Multicomponent Texture Discrimination [J].
Verdoolaege, Geert ;
Scheunders, Paul .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 95 (03) :265-286
[2]   Hidden Markov model-based speech enhancement using multivariate Laplace and Gaussian distributions [J].
Aroudi, Ali ;
Veisi, Hadi ;
Sameti, Hossein .
IET SIGNAL PROCESSING, 2015, 9 (02) :177-185
[3]   Wavelet-based hybrid natural image modeling using generalized Gaussian and α-stable distributions [J].
Tang, Chongwu ;
Yang, Xiaokang ;
Zhai, Guangtao .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 29 :61-70
[4]   Classification between natural and graphics images based on generalized Gaussian distributions [J].
Morinaga, Atsushi ;
Hara, Kenji ;
Inoue, Kohei ;
Urahama, Kiichi .
INFORMATION PROCESSING LETTERS, 2018, 138 :31-34
[5]   Riemannian Generalized Gaussian Distributions on the Space of SPD Matrices for Image Classification [J].
Abbad, Zakariae ;
El Maliani, Ahmed Drissi ;
El Hassouni, Mohammed ;
Abbassi, Mohamed Tahar Kadaoui ;
Bombrun, Lionel ;
Berthoumieu, Yannick .
IEEE ACCESS, 2024, 12 :26096-26109
[6]   Modeling gabor coefficients via generalized Gaussian distributions for face recognition [J].
Gonzalez-Jimenez, Daniel ;
Perez-Gonzalez, Fernando ;
Comesana-Alfaro, Pedro ;
Perez-Freire, Luis ;
Alba-Castro, Jose Luis .
2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, :2181-2184
[7]   High dimension lattice vector quantizer design for generalized Gaussian distributions [J].
Fonteles, Leonardo Hidd ;
Antonini, Marc .
2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, :1881-+
[8]   Speech signal modeling using multivariate distributions [J].
Aroudi, Ali ;
Veisi, Hadi ;
Sameti, Hossein ;
Mafakheri, Zahra .
EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2015, :1-14
[9]   Signal Subspace-based Voice Activity Detection Using Generalized Gaussian Distribution [J].
Um, Yong-Sub ;
Chang, Joon-Hyuk ;
Kim, Dong Kook .
JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2013, 32 (02) :131-137
[10]   Using Generalized Gaussian Distributions to Improve Regression Error Modeling for Deep Learning-Based Speech Enhancement [J].
Chai, Li ;
Du, Jun ;
Liu, Qing-Feng ;
Lee, Chin-Hui .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (12) :1919-1931