Optimal design of a variable stiffness joint in a robot manipulator using the response surface method

被引:12
|
作者
Yoo, Jeonghoon [1 ]
Hyun, Myung Wook [2 ]
Choi, Jun Ho [3 ]
Kang, Sungchul [3 ]
Kim, Seung-Jong [4 ]
机构
[1] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea
[2] SAMSUNG Elect Co Ltd, Storage Syst Div, Suwon 443742, Gyeonggo Do, South Korea
[3] Korea Inst Sci & Technol, Intelligent Robot Res Ctr, Seoul 136791, South Korea
[4] Korea Inst Sci & Technol, Tribol Res Ctr, Seoul 136791, South Korea
关键词
Variable stiffness joint; Robot manipulator; Permanent magnet; Finite element method; Design of experiments; Response surface method; FORCE;
D O I
10.1007/s12206-009-0516-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The response surface method combined with the design of experiment-based design optimization of a variable stiffness joint (VSJ) is presented in this article. A VSJ used in a manipulator of a robot arm to support 1 kg payload at the end is designed by considering the minimization of the total weight as the objective function. Owing to the requirement of large rotational stiffness of the VSJ, over 10 N center dot m, ring-type permanent magnets are adopted. First, a model composed of two permanent magnets was initially manufactured and tested for comparison with the analysis results. Then, a three-ring-type permanent magnet-based model is suggested and optimized to increase the torque of VSJ. The finite element method is used as a magnetic field analysis method to substitute for the expensive experimental process. Optimization results decrease the weight from 0.899 kg to 0.538 kg, still satisfying the requirement for the rotational stiffness.
引用
收藏
页码:2236 / 2243
页数:8
相关论文
共 50 条
  • [1] Optimal design of a variable stiffness joint in a robot manipulator using the response surface method
    Jeonghoon Yoo
    Myung Wook Hyun
    Jun Ho Choi
    Sungchul Kang
    Seung-Jong Kim
    Journal of Mechanical Science and Technology, 2009, 23 : 2236 - 2243
  • [2] Optimal design of a variable stiffness joint using permanent magnets
    Hyun, Myung Wook
    Yoo, Jeonghoon
    Hwang, Seoung Tack
    Choi, Jun Ho
    Kang, Sungchul
    Kim, Seung-Jong
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) : 2710 - 2712
  • [3] Design and Analysis of a Novel Variable Stiffness Joint for Robot
    Jin, Hui
    Luo, Mulin
    Lu, Shiqing
    He, Qingsong
    Lin, Yuanchang
    ACTUATORS, 2023, 12 (01)
  • [4] Optimal robot placement using response surface method
    Kamrani, Behnam
    Berbyuk, Viktor
    Wappling, Daniel
    Stickelmann, Uwe
    Feng, Xiaolong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 44 (1-2) : 201 - 210
  • [5] Optimal robot placement using response surface method
    Behnam Kamrani
    Viktor Berbyuk
    Daniel Wäppling
    Uwe Stickelmann
    Xiaolong Feng
    The International Journal of Advanced Manufacturing Technology, 2009, 44 : 201 - 210
  • [6] Design and analysis of a single leg robot based on variable stiffness joint
    Jin, Hui
    Luo, Mulin
    Duan, Chengyi
    Lu, Shiqing
    Li, Yepeng
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2025, 39 (04) : 2139 - 2150
  • [7] Structural design and stiffness matching control of bionic variable stiffness joint for human-robot collaboration
    Zhang, Xiuli
    Huang, Liqun
    Niu, Hao
    BIOMIMETIC INTELLIGENCE AND ROBOTICS, 2023, 3 (01):
  • [8] Design of an electromagnetic prismatic joint with variable stiffness
    Zhao, Yong
    Yu, Jue
    Wang, Hao
    Chen, Genliang
    Lai, Xinmin
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2017, 44 (02) : 222 - 230
  • [9] An Optimal Design of the Curtain Airbag System Using the Response Surface Method
    Yun, Yong-Won
    Park, Gyung-Jin
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2013, 37 (01) : 129 - 135
  • [10] Low-cost variable stiffness joint design using translational variable radius pulleys
    Yigit, Cihat Bora
    Bayraktar, Ertugrul
    Boyraz, Pinar
    MECHANISM AND MACHINE THEORY, 2018, 130 : 203 - 219