Geometry of pseudo-complex General Relativity

被引:5
作者
Schaefer, M. [1 ]
Hess, P. O. [1 ,2 ]
Greiner, W. [1 ]
机构
[1] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
关键词
general relativity; gravitation; TORSION;
D O I
10.1002/asna.201412104
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A first approach towards a geometric formulation of pseudo-complex General Relativity is presented. We review the mathematics of pseudo-complex numbers and functions and show how several concepts from real differential geometry can be generalized to the pseudo-complex case. It is shown that the main feature of such a pseudo-complex geometry is a product structure, which allows a separate treatment of all mathematical objects in two different sectors, respectively. In order to obtain a new theory, one needs new principles to connect both sectors and to define a real physical space-time embedded into the pseudo-complex manifold. (C) 2014 WILEY-VCH Verlag GmbH&Co.KGaA, Weinheim
引用
收藏
页码:751 / 756
页数:6
相关论文
共 50 条
  • [21] Geometry, space-time and gravitation: relating basic concepts of general relativity
    Falciano, F. T.
    [J]. REVISTA BRASILEIRA DE ENSINO DE FISICA, 2009, 31 (04):
  • [22] Conformal Hamiltonian dynamics of general relativity
    Arbuzov, A. B.
    Barbashov, B. M.
    Nazmitdinov, R. G.
    Pervushin, V. N.
    Borowiec, A.
    Pichugin, K. N.
    Zakharov, A. F.
    [J]. PHYSICS LETTERS B, 2010, 691 (05) : 230 - 233
  • [23] Clifford to Unify General Relativity and Electromagnetism
    Socroun, Thierry
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) : 311 - 319
  • [24] The common solution space of general relativity
    Paliathanasis, Andronikos
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2024, 206
  • [25] No uniform density star in general relativity
    Abhas Mitra
    [J]. Astrophysics and Space Science, 2011, 333 : 169 - 174
  • [26] No uniform density star in general relativity
    Mitra, Abhas
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2011, 333 (01) : 169 - 174
  • [27] Mesh and measure in early general relativity
    Darrigol, Olivier
    [J]. STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2015, 52 : 163 - 187
  • [28] Intrinsic General Relativity and Clifford Algebra
    Socroun, Thierry
    Girardot, Dominique
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (05)
  • [29] Intrinsic General Relativity and Clifford Algebra
    Thierry Socroun
    Dominique Girardot
    [J]. Advances in Applied Clifford Algebras, 2022, 32
  • [30] Dynamics of general relativity and cosmology - Solutions of Einstein equations as geodesics in pseudo-Riemannian manifolds
    Szydlowski, M
    Krawiec, A
    [J]. ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 2000, 11 (1-2): : 121 - 130