Bounds on mixedness and entanglement of quantum teleportation resources

被引:16
作者
Paulson, K. G. [1 ]
Satyanarayana, S. V. M. [1 ]
机构
[1] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
关键词
Quantum entanglement; Quantum teleportation; Concurrence; Singlet fraction; Von Neumann entropy; Linear entropy; SINGLET FRACTION; INEQUALITIES; STATE;
D O I
10.1016/j.physleta.2017.02.010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a standard teleportation protocol, rank dependent upper bounds on Von Neumann entropy and linear entropy beyond which the states of respective ranks cease to be useful for quantum teleportation are derived analytically for a general d x d bipartite systems. For two qubit mixed states, we obtain rank dependent lower bound on concurrence below which the state is useless for quantum teleportation. For two qubit system, we construct mixed states of different ranks that exhibit theoretical rank dependent upper bounds on the measures of mixedness and lower bounds on the concurrence. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1134 / 1137
页数:4
相关论文
共 29 条
  • [21] Qiua Liang, 2014, ANN PHYS, V350, P137
  • [22] Optimal teleportation with a mixed state of two qubits
    Verstraete, F
    Verschelde, H
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (09) : 4
  • [23] Verstraete F, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.022307
  • [24] Local filtering operations on two qubits
    Verstraete, F
    Dehaene, J
    DeMoor, B
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 4
  • [25] Maximally entangled mixed states of two qubits
    Verstraete, F
    Audenaert, K
    De Moor, B
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 6
  • [26] VONNEUMANN J, 1995, MATH FDN QUANTUM MEC
  • [27] Maximal entanglement versus entropy for mixed quantum states
    Wei, TC
    Nemoto, K
    Goldbart, PM
    Kwiat, PG
    Munro, WJ
    Verstraete, F
    [J]. PHYSICAL REVIEW A, 2003, 67 (02): : 12
  • [28] QUANTUM STATES WITH EINSTEIN-PODOLSKY-ROSEN CORRELATIONS ADMITTING A HIDDEN-VARIABLE MODEL
    WERNER, RF
    [J]. PHYSICAL REVIEW A, 1989, 40 (08): : 4277 - 4281
  • [29] Wootters WK, 2001, QUANTUM INF COMPUT, V1, P27