Efficient Electrochemical Reduction of CO2 to HCOOH over Sub-2nm SnO2 Quantum Wires with Exposed Grain Boundaries

被引:367
作者
Liu, Subiao [1 ]
Xiao, Jing [2 ]
Lu, Xue Feng [1 ]
Wang, Jiong [1 ]
Wang, Xin [1 ]
Lou, Xiong Wen [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H7, Canada
基金
新加坡国家研究基金会;
关键词
C1; products; CO2; electroreduction; formic acid; grain boundary; SnO2; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; ELECTROREDUCTION; CONVERSION; CATALYSTS; ELECTRODES; NANOWIRES; FORMATE;
D O I
10.1002/anie.201903613
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical reduction of CO2 could mitigate environmental problems originating from CO2 emission. Although grain boundaries (GBs) have been tailored to tune binding energies of reaction intermediates and consequently accelerate the CO2 reduction reaction (CO2RR), it is challenging to exclusively clarify the correlation between GBs and enhanced reactivity in nanostructured materials with small dimension (<10nm). Now, sub-2nm SnO2 quantum wires (QWs) composed of individual quantum dots (QDs) and numerous GBs on the surface were synthesized and examined for CO2RR toward HCOOH formation. In contrast to SnO2 nanoparticles (NPs) with a larger electrochemically active surface area (ECSA), the ultrathin SnO2 QWs with exposed GBs show enhanced current density (j), an improved Faradaic efficiency (FE) of over 80% for HCOOH and ca. 90% for C1 products as well as energy efficiency (EE) of over 50% in a wide potential window; maximum values of FE (87.3%) and EE (52.7%) are achieved.
引用
收藏
页码:8499 / 8503
页数:5
相关论文
共 33 条
[1]   Direct formate fuel cells: A review [J].
An, L. ;
Chen, R. .
JOURNAL OF POWER SOURCES, 2016, 320 :127-139
[2]  
[Anonymous], 2018, ANGEW CHEM
[3]  
[Anonymous], 2017, Angew. Chem, DOI DOI 10.1002/ANGE.201608279
[4]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[5]   Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment [J].
Artz, Jens ;
Mueller, Thomas E. ;
Thenert, Katharina ;
Kleinekorte, Johanna ;
Meys, Raoul ;
Sternberg, Andre ;
Bardow, Andre ;
Leitner, Walter .
CHEMICAL REVIEWS, 2018, 118 (02) :434-504
[6]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[7]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[8]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[9]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[10]   1D SnO2 with Wire-in-Tube Architectures for Highly Selective Electrochemical Reduction of CO2 to C1 Products [J].
Fan, Lei ;
Xia, Zheng ;
Xu, Meijia ;
Lu, Yingying ;
Li, Zhongjian .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)