Minimax efficient finite-difference stochastic gradient estimators using black-box function evaluations

被引:2
|
作者
Lam, Henry [1 ]
Li, Haidong [2 ]
Zhang, Xuhui [3 ]
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, 500 W 120th St, New York, NY 10027 USA
[2] Peking Univ, Dept Ind Engn & Management, 60 Yannan Yuan, Beijing, Peoples R China
[3] Stanford Univ, Dept Management Sci & Engn, 475 Via Ortega, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Stochastic gradient estimation; Zeroth-order oracle; Finite difference; Minimax efficiency; Le Cam's method; Modulus of continuity; PERTURBATION ANALYSIS; DERIVATIVE ESTIMATION; SENSITIVITY ANALYSIS; RATES;
D O I
10.1016/j.orl.2020.10.013
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Standard approaches to stochastic gradient estimation, with only noisy black-box function evaluations, use the finite-difference method or its variants. Though natural, it is open to our knowledge whether their statistical accuracy is the best possible. This paper argues so by showing that central finite difference is a nearly minimax optimal zeroth-order gradient estimator for a suitable class of objective functions and mean squared risk, among both the class of linear estimators and the much larger class of all (nonlinear) estimators. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 47
页数:8
相关论文
共 7 条
  • [1] MINIMAX EFFICIENT FINITE-DIFFERENCE GRADIENT ESTIMATORS
    Lam, Henry
    Zhang, Xuhui
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 392 - 403
  • [2] Distributionally Constrained Black-Box Stochastic Gradient Estimation and Optimization
    Lam, Henry
    Zhang, Junhui
    OPERATIONS RESEARCH, 2024,
  • [3] An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems
    Morshed, Monjur
    Ingalls, Brian
    Ilie, Silvana
    BIOSYSTEMS, 2017, 151 : 43 - 52
  • [4] PMU Measurement Based Generator Parameter Calibration by Black-Box Optimization with A Stochastic Radial Basis Function Surrogate Model
    Khazeiynasab, Seyyed Rashid
    Qi, Junjian
    2020 52ND NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2021,
  • [5] Implementation of Elastic Prestack Reverse-Time Migration Using an Efficient Finite-Difference Scheme
    Hongyong Yan
    Lei Yang
    Hengchang Dai
    Xiang-Yang Li
    Acta Geophysica, 2016, 64 : 1605 - 1625
  • [6] Implementation of Elastic Prestack Reverse-Time Migration Using an Efficient Finite-Difference Scheme
    Yan, Hongyong
    Yang, Lei
    Dai, Hengchang
    Li, Xiang-Yang
    ACTA GEOPHYSICA, 2016, 64 (05): : 1605 - 1625
  • [7] Efficient least-squares reverse time migration in TTI media using a finite-difference solvable pure qP-wave equation
    Mao, Qiang
    Huang, Jianping
    Mu, Xinru
    Zhang, Zixiao
    Zhang, Yujian
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2024, 21 (02) : 465 - 482