Critical behavior and synchronization of discrete stochastic phase-coupled oscillators

被引:37
作者
Wood, Kevin
Van den Broeck, C.
Kawai, R.
Lindenberg, Katja
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[4] Hasselt Univ, B-3590 Diepenbeek, Belgium
[5] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 03期
关键词
D O I
10.1103/PhysRevE.74.031113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Synchronization of stochastic phase-coupled oscillators is known to occur but difficult to characterize because sufficiently complete analytic work is not yet within our reach, and thorough numerical description usually defies all resources. We present a discrete model that is sufficiently simple to be characterized in meaningful detail. In the mean-field limit, the model exhibits a supercritical Hopf bifurcation and global oscillatory behavior as coupling crosses a critical value. When coupling between units is strictly local, the model undergoes a continuous phase transition that we characterize numerically using finite-size scaling analysis. In particular, we explicitly rule out multistability and show that the onset of global synchrony is marked by signatures of the XY universality class. Our numerical results cover dimensions d=2, 3, 4, and 5 and lead to the appropriate XY classical exponents beta and nu, a lower critical dimension d(lc)=2, and an upper critical dimension d(uc)=4.
引用
收藏
页数:9
相关论文
共 27 条
[1]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[3]  
Goldenfeld N., 1992, LECT PHASE TRANSITIO
[4]  
Gottlob A. P., 1993, Nuclear Physics B, Proceedings Supplements, V30, P838, DOI 10.1016/0920-5632(93)90338-7
[5]  
Hong H, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.045204
[6]  
Huang K., 1988, STAT MECH
[7]   Finite-size scaling of the correlation length above the upper critical dimension in the five-dimensional Ising model [J].
Jones, JL ;
Young, AP .
PHYSICAL REVIEW B, 2005, 71 (17)
[8]  
Kuramoto Y, 2003, CHEM OSCILLATIONS WA
[9]  
Kuznetsov Y.A., 2013, Elements of Applied Bifurcation Theory
[10]   Onset of homogeneous oscillations in reactive systems [J].
Mansour, MM ;
Dethier, J ;
Baras, F .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (21) :9265-9275