Computation of Filtering Functions for Cryptographic Applications

被引:1
作者
Fuster-Sabater, A. [1 ]
机构
[1] CSIC, Inst Phys & Informat Technol ITEFI, Madrid 28006, Spain
来源
2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE | 2014年 / 29卷
关键词
Nonlinear filter; encryption function; linear complexity; cryptography; security; GENERATORS; COMPLEXITY; SEQUENCES;
D O I
10.1016/j.procs.2014.05.185
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Large Linear Complexity (LC) is a fundamental requirement for a binary sequence to be used in secret key cryptography. In this paper, a method of computing all the nonlinear filtering functions applied to a shift register with a linear complexity LC >= ((L)(k) + (L)(k-1)) , where L is the register's length and k the order of the filter, is proposed. Emphasis is on the simple algebraic operations (addition and shifting of functions) included in the calculations. The method formally completes the family of nonlinear functions whose filtered sequences satisfy the previous lower bound on LC. In cryptographic terms, it means an easy and useful way of designing sequence generators for cryptographic purposes.
引用
收藏
页码:2013 / 2023
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2016, HDB APPL CRYPTOGRAPH
[2]   Performance evaluation of highly efficient techniques for software implementation of LFSR [J].
Delgado-Mohatar, Oscar ;
Fuster-Sabater, Amparo ;
Sierra, Jose M. .
COMPUTERS & ELECTRICAL ENGINEERING, 2011, 37 (06) :1222-1231
[3]  
EPC Global, SHIFT REGISTER SEQUE
[4]   Computing Classes of Cryptographic Sequence Generators [J].
Fuster-Sabater, A. .
2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 :2440-2443
[5]  
Golomb S.W., 1982, Shift Register Sequences
[6]  
Kolokotronis N, 2006, LECT NOTES COMPUT SC, V4086, P271
[7]  
Lidl R., 1997, ENCICLOPEIDA MATH IT, V20
[8]   On the linear complexity of sequences obtained by state space generators [J].
Limniotis, Konstantinos ;
Kolokotronis, Nicholas ;
Kalouptsidis, Nicholas .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (04) :1786-1793
[9]  
MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
[10]   One-Time Pad as a nonlinear dynamical system [J].
Nagaraj, Nithin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) :4029-4036