Equilibrium States on Right LCM Semigroup C*-Algebras

被引:13
作者
Afsar, Zahra [1 ]
Brownlowe, Nathan [2 ]
Larsen, Nadia S. [3 ]
Stammeier, Nicolai [3 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Northfields Ave, Wollongong, NSW 2522, Australia
[2] Univ Sydney, Sch Math & Stat, Eastern Ave, Camperdown, NSW 2006, Australia
[3] Univ Oslo, Dept Math, Moltke Moes Vei 35,POB 1053, NO-0316 Oslo, Norway
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
PHASE-TRANSITION;
D O I
10.1093/imrn/rnx162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the structure of equilibrium states for a natural dynamics on the boundary quotient diagram of C*-algebras for a large class of right LCM semigroups. The approach is based on abstract properties of the semigroup and covers the previous case studies on N x N-x, dilation matrices, self-similar actions, and Baumslag-Solitar monoids. At the same time, it provides new results for right LCM semigroups associated to algebraic dynamical systems.
引用
收藏
页码:1642 / 1698
页数:57
相关论文
共 31 条
[1]  
BOST - J.-B., 1995, Selecta Math. (N.S.), V1, P411, DOI [DOI 10.1007/BF01589495, 10.1007/BF01589495]
[2]  
Bratteli O., 1997, Texts and Monographs in Physics, V2
[3]   On the Zappa-Szep product [J].
Brin, MG .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (02) :393-424
[4]   ON C*-ALGEBRAS ASSOCIATED TO RIGHT LCM SEMIGROUPS [J].
Brownlowe, Nathan ;
Larsen, Nadia S. ;
Stammeier, Nicolai .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (01) :31-68
[5]   The boundary quotient for algebraic dynamical systems [J].
Brownlowe, Nathan ;
Stammeier, Nicolai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (02) :772-789
[6]   Zappa-Szep products of semigroups and their C*-algebras [J].
Brownlowe, Nathan ;
Ramagge, Jacqui ;
Robertson, David ;
Whittaker, Michael F. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) :3937-3967
[7]   Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers [J].
Brownlowe, Nathan ;
Huef, Astrid An ;
Laca, Marcelo ;
Raeburn, Iain .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :35-62
[8]  
Brownlowe Nathan, INDIANA U MATH J
[9]  
Clark LO, 2016, INDIANA U MATH J, V65, P2137
[10]   A CLASS OF D-SIMPLE SEMIGROUPS [J].
CLIFFORD, AH .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (04) :547-556