Liouville theory and uniformization of four-punctured sphere

被引:24
作者
Hadasz, Leszek
Jaskolski, Zbigniew
机构
[1] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
[2] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
[3] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland
关键词
D O I
10.1063/1.2234272
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A few years ago Zamolodchikov and Zamolodchikov proposed an expression for the four-point classical Liouville action in terms of the three-point actions and the classical conformal block [Nucl. Phys. B 477, 577 (1996)]. In this paper we develop a method of calculating the uniformizing map and the uniformizing group from the classical Liouville action on n-punctured sphere and discuss the consequences of Zamolodchikovs conjecture for an explicit construction of the uniformizing map and the uniformizing group for the sphere with four punctures. (c) 2006 American Institute of Physics.
引用
收藏
页数:15
相关论文
共 19 条
[1]  
AHLFORS LV, 1979, COMPLEX ANA
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   Proof of Polyakov conjecture for general elliptic singularities [J].
Cantini, L ;
Menotti, P ;
Seminara, D .
PHYSICS LETTERS B, 2001, 517 (1-2) :203-209
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[5]   Classical geometry from the quantum Liouville theory [J].
Hadasz, L ;
Jaskólski, Z ;
Piatek, M .
NUCLEAR PHYSICS B, 2005, 724 (03) :529-554
[6]   Classical Liouville action on the sphere with three hyperbolic singularities [J].
Hadasz, L ;
Jaskólski, Z .
NUCLEAR PHYSICS B, 2004, 694 (03) :493-508
[7]  
HADASZ L, UNPUB
[8]  
Heins M., 1962, Nagoya Math. J., V21, P1
[9]   ON THE UNIFORMIZATION OF THE N-PUNCTURED SPHERE [J].
HEMPEL, JA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :97-115
[10]  
Picard E, 1905, J REINE ANGEW MATH, V130, P243