TWO-SIDED BGG RESOLUTIONS OF ADMISSIBLE REPRESENTATIONS

被引:16
作者
Arakawa, Tomoyuki [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
LIE-ALGEBRA COHOMOLOGY; FOCK REPRESENTATIONS; KAC; VIRASORO; MODULES;
D O I
10.1090/S1088-4165-2014-00454-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjecture of Frenkel, Kac and Wakimoto on the existence of two-sided BGG resolutions of G-integrable admissible representations of affine Kac-Moody algebras at fractional levels. As an application we establish the semi-infinite analogue of the generalized Borel-Weil theorem for minimal parabolic subalgebras which enables an inductive study of admissible representations.
引用
收藏
页码:183 / 222
页数:40
相关论文
共 41 条
[1]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[2]  
Andersen H. H., 2003, PROGR MATH, V210, P1
[3]  
Andersen Henning Haahr, 2003, THEORY, V7, P681, DOI [10.1090/S1088-4165-03-00189-4, DOI 10.1090/S1088-4165-03-00189-4]
[4]  
[Anonymous], ARXIVQALG9703010
[5]  
[Anonymous], USPEKHI MAT NAUK
[6]  
[Anonymous], ARXIV10041554MATHQA
[7]  
[Anonymous], 2004, INT MATH RES NOT
[8]   Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture [J].
Arakawa, T .
DUKE MATHEMATICAL JOURNAL, 2005, 130 (03) :435-478
[9]  
Arakawa T., ARXIV12074857MATHQA
[10]  
Arakawa T, 2007, INVENT MATH, V169, P219, DOI 10.1007/s00222-007-0046-1