Collective motion of magnetization in two-dimensional arrays of square elements

被引:1
|
作者
Kim, Petr D. [1 ]
Orlov, Vitaly A. [1 ,2 ]
Rudenko, Roman Yu. [1 ,2 ]
Kobyakov, Aleksandr V. [1 ,2 ]
Lukyanenko, Anna V. [1 ,2 ]
Prokopenko, Vladimir S. [3 ]
Orlova, Irina N. [3 ]
Rudenko, Tatyana V. [2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Krasnoyarsk State Pedag Univ, Krasnoyarsk 660049, Russia
基金
俄罗斯基础研究基金会;
关键词
VORTEX STATE; VORTICES; DYNAMICS; RESONANCE;
D O I
10.1140/epjb/e2018-90006-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The resonance in a two-dimensional array of square ferromagnetic elements has been experimentally investigated. The magnetization of the elements is shown to be in the vortex state. The resonance peak splitting in the array with increasing density of the elements has been established. The explanation of this phenomenon is proposed and eigenfrequencies of the collective modes are theoretically estimated. Different combinations of polarities and chiralities of the nearest elements in the array are examined.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Boundary waves in ferromagnetically ordered two-dimensional arrays of magnetic dots
    P. V. Bondarenko
    Technical Physics Letters, 2014, 40 : 813 - 815
  • [32] Ferromagnetic sublattices of antiferromagnetic skyrmion crystals formed in two-dimensional square lattices
    Liu, Zhaosen
    Ian, Hou
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 126 : 25 - 31
  • [33] Evolution of the Singularities of the Schwarz Function Corresponding to the Motion of a Vortex Patch in the Two-dimensional Euler Equations
    Riccardi, Giorgio
    Dritschel, David G.
    REGULAR & CHAOTIC DYNAMICS, 2021, 26 (05) : 562 - 575
  • [34] Diffusion motion of two-dimensional weakly coupled complex (dusty) plasmas
    Shahzad, Aamir
    He, Mao-Gang
    He, Kai
    PHYSICA SCRIPTA, 2013, 87 (03)
  • [35] Structural symmetry of two-dimensional metallic arrays: Implications for surface plasmon excitations
    Wan, Jones T. K.
    Iu, H.
    Ong, H. C.
    OPTICS COMMUNICATIONS, 2010, 283 (07) : 1546 - 1552
  • [36] Two-dimensional vibronic spectroscopy of coherent wave-packet motion
    Schubert, Alexander
    Engel, Volker
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (10)
  • [37] Size Dependence of the Plasmon Ruler Equation for Two-Dimensional Metal Nanosphere Arrays
    Ben, Xue
    Park, Harold S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (32) : 15915 - 15926
  • [38] Insulating phase in two-dimensional Josephson junction arrays investigated by nonlinear transport
    Ikegami, Hiroki
    Nakamura, Yasunobu
    PHYSICAL REVIEW B, 2022, 106 (18)
  • [39] Brownian Motion of Magnetic Skyrmions in One- and Two-Dimensional Systems
    Miki, Soma
    Jibiki, Yuma
    Tamura, Eiiti
    Goto, Minori
    Oogane, Mikihiko
    Cho, Jaehun
    Ishikawa, Ryo
    Nomura, Hikaru
    Suzuki, Yoshishige
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (08)
  • [40] Hamiltonian equation of motion and depinning phase transition in two-dimensional magnets
    Dong, R. H.
    Zheng, B.
    Zhou, N. J.
    EPL, 2012, 99 (05)