Resolving anthropogenic aerosol pollution types - deconvolution and exploratory classification of pollution events

被引:24
作者
Aijala, Mikko [1 ]
Heikkinen, Liine [1 ]
Frohlich, Roman [2 ]
Canonaco, Francesco [2 ]
Prevot, Andre S. H. [2 ]
Junninen, Heikki [1 ]
Petaja, Tuukka [1 ]
Kulmala, Markku [1 ]
Worsnop, Douglas [1 ,3 ]
Ehn, Mikael [1 ]
机构
[1] Univ Helsinki, Dept Phys, Helsinki, Finland
[2] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[3] Aerodyne Res Inc, Billerica, MA USA
基金
欧洲研究理事会; 芬兰科学院;
关键词
POSITIVE MATRIX FACTORIZATION; QUALITY INTERACTIONS EUCAARI; EUROPEAN INTEGRATED PROJECT; VOLATILITY BASIS-SET; NEW-YORK-CITY; MASS-SPECTROMETER; ORGANIC-AEROSOL; HIGH-RESOLUTION; SOURCE APPORTIONMENT; BOREAL FOREST;
D O I
10.5194/acp-17-3165-2017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesizing this raw data into chemical information necessitates the use of advanced, statisticsbased data analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification remain marginal. Here we present an example of combining data dimensionality reduction (factorization) with exploratory classification (clustering), and show that the results cannot only reproduce and corroborate earlier findings, but also complement and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorization to extract spectral characteristics of the organic component of air pollution plumes, together with an unsupervised clustering algorithm, k -means C C, for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately chosen metrics for spectral dissimilarity along with optimized data weighting, the source-specific pollution characteristics can be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and source-driven aerosol classification, we were also able to classify and characterize outlier groups that would likely be disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess the performance of mass spectral simi-larity metrics and optimize weighting for mass spectral variables. This facilitates algorithm-based evaluation of aerosol spectra, which may prove invaluable for future development of automatic methods for spectra identification and classification. Robust, statistics-based results and data visualizations also provide important clues to a human analyst on the existence and chemical interpretation of data structures. Applying these methods to a test set of data, aerosol mass spectrometric data of organic aerosol from a boreal forest site, yielded five to seven different recurring pollution types from various sources, including traffic, cooking, biomass burning and nearby sawmills. Additionally, three distinct, minor pollution types were discovered and identified as amine-dominated aerosols.
引用
收藏
页码:3165 / 3197
页数:33
相关论文
共 130 条
[1]   Physical characterization of aerosol particles during nucleation events [J].
Aalto, P ;
Hämeri, K ;
Becker, E ;
Weber, R ;
Salm, J ;
Mäkelä, JM ;
Hoell, C ;
O'Dowd, CD ;
Karlsson, H ;
Hansson, HC ;
Väkevä, M ;
Koponen, IK ;
Buzorius, G ;
Kulmala, M .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2001, 53 (04) :344-358
[2]  
Aijala M., 2017, DECONVOLVED MASS SPE
[3]   Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment [J].
Aiken, A. C. ;
Salcedo, D. ;
Cubison, M. J. ;
Huffman, J. A. ;
DeCarlo, P. F. ;
Ulbrich, I. M. ;
Docherty, K. S. ;
Sueper, D. ;
Kimmel, J. R. ;
Worsnop, D. R. ;
Trimborn, A. ;
Northway, M. ;
Stone, E. A. ;
Schauer, J. J. ;
Volkamer, R. M. ;
Fortner, E. ;
de Foy, B. ;
Wang, J. ;
Laskin, A. ;
Shutthanandan, V. ;
Zheng, J. ;
Zhang, R. ;
Gaffney, J. ;
Marley, N. A. ;
Paredes-Miranda, G. ;
Arnott, W. P. ;
Molina, L. T. ;
Sosa, G. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (17) :6633-6653
[4]   O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry [J].
Aiken, Allison C. ;
Decarlo, Peter F. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. ;
Huffman, J. Alex ;
Docherty, Kenneth S. ;
Ulbrich, Ingrid M. ;
Mohr, Claudia ;
Kimmel, Joel R. ;
Sueper, Donna ;
Sun, Yele ;
Zhang, Qi ;
Trimborn, Achim ;
Northway, Megan ;
Ziemann, Paul J. ;
Canagaratna, Manjula R. ;
Onasch, Timothy B. ;
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Dommen, Josef ;
Duplissy, Jonathan ;
Metzger, Axel ;
Baltensperger, Urs ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4478-4485
[5]   Elemental analysis of organic species with electron ionization high-resolution mass spectrometry [J].
Aiken, Allison. C. ;
DeCarlo, Peter F. ;
Jimenez, Jose L. .
ANALYTICAL CHEMISTRY, 2007, 79 (21) :8350-8358
[6]   Characterization of urban and rural organic particulate in the lower Fraser valley using two aerodyne aerosol mass spectrometers [J].
Alfarra, MR ;
Coe, H ;
Allan, JD ;
Bower, KN ;
Boudries, H ;
Canagaratna, MR ;
Jimenez, JL ;
Jayne, JT ;
Garforth, AA ;
Li, SM ;
Worsnop, DR .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (34) :5745-5758
[7]   Quantitative sampling using an Aerodyne aerosol mass spectrometer - 1. Techniques of data interpretation and error analysis [J].
Allan, JD ;
Jimenez, JL ;
Williams, PI ;
Alfarra, MR ;
Bower, KN ;
Jayne, JT ;
Coe, H ;
Worsnop, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D3)
[8]   Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer [J].
Allan, JD ;
Alfarra, MR ;
Bower, KN ;
Coe, H ;
Jayne, JT ;
Worsnop, DR ;
Aalto, PP ;
Kulmala, M ;
Hyötyläinen, T ;
Cavalli, F ;
Laaksonen, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :315-327
[9]  
Anderberg M. R., 1973, MONOGRAPHS TXB APPL
[10]  
[Anonymous], 1984, An introduction to multivariate statistical analysis